

STULZ the natural choice

CyberAir the new world of close control air conditioning

CyberAir Questioning the status quo

To develop the extraordinary, STULZ questioned the status quo and set new standards with CyberAir for reliability and innovation in precision air conditioning units.

Using and further developing trend-setting technologies, STULZ offers unknown benefits in safety, cost reduction and environmental compatibility.

One thing does not change with CyberAir: STULZ can always be trusted to provide reliability and quality.

» CyberAir units offer the highest cooling capacities with the lowest footprint, operating costs and noise level designed to meet the needs of the latest high density IT Servers

» Mission Critical applications rely on STULZ CyberAir for the next generation of IT cooling

Source: IBM Deutschland (

- » CyberAir units utilise the latest EC fan technology and achieve revolutionary energy savings.
- » The C7000 microprocessor provides the CyberAir unit with reliable precision control and monitoring of the environment with the ability to exchange data with Building Management Systems.
- » CyberAir units are built to the highest quality standards in a modern facility only using quality components.
- » CyberAir, the complete precision air conditioning range up to 150 kW per unit, available in 8 cooling designs and 5 sizes.

At 8,500 m³/h and 350 Pa

CyberAir EC fan technology Nothing in the world comes close to it

The EC fan technology – electronically commutated motor – offers a breeze of fresh air with the new generation of high-performance compact CyberAir precision air condition units.

This new technology increases the efficiency of each CyberAir unit considerably reducing the operating costs. This is made possible by utilising modern electronics which together with the intelligent Controller C7000 allow for any given control variant and ensure a 24 hour optimised operation tuned to the prevalent ambient paramenters.

All parameters, like volume flow, cooling capacity, external compression, noise level, can be optimised with each unit for the local conditions.

- » High efficiency with energy savings up to 30 % compared to standard fans
- » Infinitely variable air volume setting via Controller C7000
- » Long and maintenance-free operating life through direct drive technology
- » Smooth air path and noise absorbing insulation reduces sound levels
- » Anti-vibration-mounting isolates fan from unit structure

A typical example of the running cost savings of CyberAir's low energy EC fans compared with ordinary fans. A computer room with six ASD1200CW CyberAir units.

CyberAir Perfect blend of design and materials

CyberAir's innovative design produces tangible benefits. Our engineers have one aim: The perfect blend of design and materials. Each design and component has been repeatedly tested. STULZ has specialised in the protection of critical systems for more than three decades. The result: More and more clients throughout the world trust our product and system solutions.

Sound absorption system

- Absorption instead of reflection: Reduction of the sound pressure level through innovative use of sound absorbing materials
- Silent operation through flowoptimised fan design
- » Intelligent, silent air ducting

CyberAir's sound absorbing insulation has up to 5dBA noise reduction compared with double skin panels

- » STULZ Sound Absorption System reduces the sound levels by up to 5 dBA less than double skin panels
- » CyberAir units require ≥ 12 % less space for the same cooling capacity
- » CyberAir units offer the greatest possible protection for critical systems rooms

Sound absorption system Absorption instead of reflection through targeted use of sound absorbing materials

rce: IBM Deutschland Gmb

Small footprint with new dimensions

- Extremely favourable proportion of footprint and cooling capacity
- » Front maintenance access

High flexibility, smooth extension

- The systems can be expanded to up to 31 units per room without additional hardware
- It is possible to combine units of different size and capacity
- Optimal air distribution and removal of spot heat loads
- Units fit through standard doors and allow for easy transportation

Filter Control Management

- Protection against low air flow and hot spots through intelligent fan control
- » A required filter change will automatically be indicated

CyberAir footprint in relation to cooling capacity

Safety and high availability

- » High processing and material quality in every detail
 - » Corrosion protection
 - » High-quality components guarantee long service life
 - » Automatic switch-over to stand-by unit during failure
 - » Unit and component sequencing

High efficiency G4 (EU4) Zig-Zag filters extend filter service intervals and reduce airflow resistance

Electric reheat with stainless steel sheath provides high capacity with low surface temperatures

CyberAir Consistent development of modular design

Modular design has gained new significance with CyberAir. A proven system that not only provides maximum flexibility, but total security. Each CyberAir unit features its own stand alone intelligence and is unaffected by external failures. This safety is achieved through tailor-made, cost-effective modular redundancy; the VarioLogic System guarantees the automatic switch-over to reserve capacities or additional capacity during peak loads

The EC fan allows the air quantity to be easily adjusted and eliminate hot spots with better room air distribution. The ability to adjust air flow is of particular benefit to rooms housing the latest high density servers

Provision for trouble-free expansion

With increasing heat loads, CyberAir can be extended by adding further modules. Up to 31 units can be installed in one computer room and controlled via one C7000 VarioLogic System.

CyberAir GE2 – Indirect Free Cooling A technology breakthrough

CyberAir C7000 Intelligent control with VarioLogic

STULZ VarioLogic provides security for current applications and future expansion requirements. Whether local or central control: with CyberAir's C7000 you always choose reliability.

Protection and safety for critical applications through intelligent control strategies

- » Sequencing strategies with up to 31 units
- » Operating hour compensation extends service life of components
- » One VarioLogic system can control up to 31 units within a room
- » Filter control management ensures constant air distribution
- » Refrigerant pressure management protects against system failure
- » Programmable UPS operation reduces electrical load when there is a power failure
- » Potential-free contacts for alarm and operating states permit easy remote monitoring
- » Scalable graphical recording of control values "temperature" and "humidity" between 1 and 1440 days
- » Event log recording the last 200 event

Connectivity

- » Connection to all BMS systems of well-established manufacturers
- » Connection to STULZ BMS systems TeleCompTrol
- » Communication via internet protocols SNMP and HTTP
- » SMS or email alarm messages via GSM modem
- » No additional hardware required

C7000 Advanced with high level user convenience

- » Simple firmware set up for individual applications
- » Configurable PI control
- » Display selectable in English and several foreign languages
- » Downloads available for the latest operating software
- » RS232 and RS485 interface for direct connecting of BMS
- » Manual operating mode for maintenance purposes

» C7000

Has all the control and monitoring functions but has no visual display and is tamperproof. All control and service parameters can be read and adjusted from a separate display or laptop.

» C7000 Plus

As C7000, but with 4-line LCD operating panel for data entry and output. The C7000 Plus allows for up to 31 units to be configured and have their actual parameters displayed.

» C7000 Advanced

Convenient and comprehensive communication for up to 31 units. Operational control, management and monitoring via large LCD graphical display. Connection to all BMS systems possible. Modbus and other data protocols have already been implemented.

CyberAir Network solutions for limitless communication

- » Support of all current BMS protocols
- » Communication via IP protocols SNMP, HTTP
- » STULZ BMS system TeleCompTrol in bus and modem version

STULZ interfaces to BMS and the Internet

- **»** The STULZ MIB7000 (Multifunctional Interface Board)
 - Integrated sequencing function for up to 31 units
 - Interfaces RS485/RS232
 - Support of all current BMS protocols
- » The STULZ WIB7000 (Web Interface Board)
 - Communication via IP protocols SNMP, HTTP
 - Browser-based configuration and operation
- » The STULZ LIB7000 (Lon Interface Board)
 - LonWorks[®]-Technology for STULZ A/C Units

BMS supplier	Data protocol	Gateways for STULZ controllers						
		C7000 Advanced	C7000 + C7000Plus each with E-Bus	further STULZ controllers ¹⁾				
STULZ, TeleCompTrol	SDC							
Other suppliers	Modbus		MIB	7000				
Kieback & Peter	P90							
Satchwell	SNP	OnBoard ³⁾	MIB7000 ³⁾	MIB7000				
TREND MICRO	Network-Bus		WID7000	1111127000				
Saia	S-Bus		MIB7000 ³⁾					
Other suppliers	BACnet							
LANDIS & STAEFA	Ni-Bus	MIB7	000 ³⁾	C4000 NIStulz				
LonWorks®	LonTalk®	LIB7000 ³⁾	LIB7000 + MIB7000 ³⁾	LIB7000 + MIB7000				
Other suppliers	SNMP		14/107000					
Other suppliers	HTTP		WIB7000					
JOHNSON CONTROLS	N2-Bus	META	SYS ²⁾³⁾	METASYS ²⁾				
LANDIS & GYR	Unigyr-Bus	C	E ²⁾³⁾	CFE ²⁾				
SIEMENS	Sinec L2-Bus	CP!	524 ²⁾³⁾	CP524 ²⁾				
¹⁾ further controllers: C1002, C10	010, C4000, C5000, C60	00 ²⁾ Gateway from BMS supp	olier ³⁾ Available on request					

The STULZ BMS system TeleCompTrol

- » Monitoring and control of STULZ chillers and A/C units
- » Graphical display of all unit parameters
- » Monitoring, sending and storing of unit alarms
- » Alarm forwarding with error messages on PC or mobile phone via SMS

Modem version

Bus version

Options to suit every application

Mechanical and general options

- » Special paint finishes
- » Raised floor stand
- » Dampers
- » Flexible duct connection
- » Fresh air connection
- » High efficiency filter EU5
- » Exhaust chamber
- » Intake plenums for upflow units
- » Sound attenuators
- » Double skin panels and doors
- » Condensate pump

Humidifier options

- » Electrode Boiler Humidifier
- » Control of remote STULZ BNB humidifier

Option temperature sensor for room monitoring

Control options

- » Fire detector
- » Smoke detector
- » Emergency fire shut-down
- » Water detector
- » Manual override
- » Automatic control of Dampers
- » Phase monitoring
- » Remote on/off control
- » Special voltages

Cooling options

- Capacity control with electronic suction valve or hot gas bypass
- » 2-way valve
- » Microprocessor controlled 2- or 3-way valve head pressure control

Heating options

- » Electric heating, 1 to 3 stages or proportional
- » Hot gas reheat
- » Hot water reheat

Options for condensators (air cooled)

- » Electric fan speed control
- » Winter operation down to minus 45 °C
- » Coil corrosion protection

8 cooling systems: The perfect solution for every requirement

A-System

The air-cooled (A) direct expansion (DX) system uses refrigerant as the heat transfer medium. Room air re-circulates through the internally mounted CyberAir unit which houses the evaporator coil, scroll compressor and refrigeration system. A remotely mounted air-cooled condenser is connected, by specialist installers, to the room unit via a sealed refrigeration circuit such that the absorbed room heat load can be rejected to atmosphere.

G-System

The glycol/water cooled (G) version utilises the same refrigeration system as the type-A CyberAir unit and room air re-circulates through an evaporator coil. However an internally mounted plate condenser is then used to transfer the room heat load to a glycol solution. This condenser water acts as a secondary heat transfer medium, which is then pumped to a remotely mounted air-cooled drycooler or cooling tower where the heat is finally rejected to atmosphere. Generally the condenser water system is in the form of a ring main connected in parallel to a number of stand-alone CyberAir units mounted in the critical space.

GE1-System

The type GE low energy free-cooling system operates in an identical way to the type G system in summer with heat exchange to a condenser water ring main with remotely mounted drycooler. However the CyberAir GE design incorporates an additional free-cooling coil in parallel to the evaporator. Through an ingenious system of valves controlled by the STULZ C7000, all of the room heat load can be absorbed by the GE coil in low ambient temperatures. In the intermediate seasons, when the ambient temperature falls below the required room condition, the GE coil provides pre-cooling to reduce compressor run time. As compressors account for around 80 % of the CyberAir's energy input, the GE system significantly reduces running costs.

CW-System

When a central chilled water system, such as the STULZ CyberCool, is the appropriate method of heat rejection, CyberAir units are available in a packaged fan-coil design. Room air is recirculated through the CyberAir cooling coil, which transfers the heat load directly into the chilled water ring main. Water flow rate is regulated by a 2 or 3-way chilled water valve, controlled by the C7000, to precisely maintain conditions in the critical space.

ACW-System

GCW-System

GE2-System

CW2-System

ACW-System

The ACW CyberAir system is a combination of both the "A" and "CW" systems with two cooling coils. The C7000 manages the ACW system to allow the air cooled "A" system to operate as standby to the "CW" chilled water system or vice versa to give added security and back up to the computer room.

GCW-System

The GCW CyberAir system is a combination of both the "G" and "CW" systems with two cooling coils. The C7000 manages the GCW system to allow the glycol cooled or condenser water "G" system to operate as standby to the "CW" chilled water system or vice versa to give added security and back up to the computer room.

GE2-System

The GE2 system is a Freecool system similar to the GE1 system using outdoor air in winter to cool glycol and save running the compressors. With GE2 the C7000 controls inverter driven variable speed pumps instead of the system of valves saving even more energy by efficient pumping of the glycol with a lower pressure drop. A small external pump covers the remaining pressure drop of the pipework and the drycooler.

CW2-System

The CyberAir unit in CW2 has two independent cooling coils and control valves and can take chilled water from two independent systems. The system can provide added back up and security. A typical application is to use the central building chilled water system as the primary chilled water source with a STULZ CyberCool chiller as the secondary chilled water source to operate when the central system is not available for example at weekends or overnight.

Technical specifications CyberAir

SD/ASU xxx A/G/GE1/ACW/GCW		171	201	241	301	351	431	521	661	791
X-Cooling capacity (total) ¹⁾	kW	18.0	20.8	25.8	31.5	36.0	45.0	53.2	70.8	85.7
X-Cooling capacity (sensible) ¹⁾	kW	18.0	20.8	24.5	29.9	34.2	45.0	49.5	64.4	71.9
W-Cooling capacity (total) ²⁾	kW	19.5	22.4	26.8	33.1	38.6	51.2	56.0	75.5	78.6
W-Cooling capacity (sensible) ²⁾	kW	18.0	20.6	24.4	30.0	34.7	45.6	49.5	66.3	69.0
irflow	m³/h	5,200	6,000	7,200	8,500	9,900	12,800	14,000	19,000	20,00
ompressor absorbed power	kW	3.7	4.2	5.3	6.4	7.2	9.2	11.0	14.6	18.3
E Max. av. ESP	Pa	700	610	420	260	310	460	340	280	190
Max. av. ESP Fan absorbed power Max. av. ESP Noise Level ³	dBA	46.2	49.3	53.2	51.8	55.5	54.1	56.0	57.4	58.9
ran absorbed power	kW	0.5	0.8	1.3	1.2	1.9	2.3	3.0	4.1	4.7
Max. av. ESP Noise Level ³⁾ Fan absorbed power	Pa	660	560	350	250	290	280	180	260	160
Noise Level ³⁾	dBA	48.5	50.8	53.8	52.7	55.7	51.7	53.2	58.0	58.9
Fan absorbed power	kW	0.6	1.0	1.6	1.3	2.1	2.4	3.1	4.5	5.2
E Max. av. ESP	Ра	640	530	300	440	200	410	290	180	80
Midx. dv. ESP Noise Level ³ Fan absorbed power Max. av. ESP Noise Level ³ Noise Level ³	dBA	47.1	50.1	53.9	52.4	55.7	54.5	56.4	57.8	58.9
Fan absorbed power	kW	0.6	1.0	1.6	1.5	2.3	2.6	3.4	4.8	5.6
≥ Max. av. ESP	Pa	610	480	240	420	180	210	340	160	50
Max. av. ESP Noise Level ³⁰ Fan absorbed power	dBA	49.4	51.7	54.7	53.3	55.9	53.3	55.0	58.3	59.
	kW	0.8	1.2	1.9	1.6	2.5	2.9	3.7	5.2	6.0
Fan absorbed power	KVV	0.0	=							
 Fan absorbed power ze X and Dualfluid-Units, double circuit 		1 ors)	1	1	2	2	3	692	852	
Fan absorbed power ze X and Dualfluid-Units, double circuit SD/ASU xxx A/G/GE1/ACW/GCW	: (2 compresso	1 ors) 222	1 272	1 332	442	482	602	692	852	105
C and Dualfluid-Units, double circuit D/ASU xxx A/G/GE1/ACW/GCW (-Cooling capacity (total) ¹⁰	: (2 compresso kW	1 rs) 222 23.2	1 272 29.7	1 332 34.9	442 46.3	482 51.5	602 63.8	692 72.2	852 87.3	105 104
C and Dualfluid-Units, double circuit D/ASU xxx A/G/GE1/ACW/GCW (-Cooling capacity (total) ¹⁰ (-Cooling capacity (sensible) ¹⁰	t (2 compresso kW kW	1 222 23.2 23.2	1 272 29.7 29.7	1 332 34.9 34.9	442 46.3 42.9	482 51.5 47.9	602 63.8 60.2	692 72.2 66.3	852 87.3 76.7	105 104 88.
Cand Dualfluid-Units, double circuit SD/ASU xxx A/G/GE1/ACW/GCW <-Cooling capacity (total) ¹⁰ <-Cooling capacity (sensible) ¹⁰ N-Cooling capacity (total) ²¹	kW kW kW kW	1 222 23.2 23.2 25.5	1 29.7 29.7 35.5	1 332 34.9 34.9 38.6	442 46.3 42.9 47.6	482 51.5 47.9 54.0	602 63.8 60.2 68.6	692 72.2 66.3 75.1	852 87.3 76.7 88.9	105 104 88. 97.
Cand Dualfluid-Units, double circuit SD/ASU xxx A/G/GE1/ACW/GCW <-Cooling capacity (total) ¹⁰ <-Cooling capacity (sensible) ¹⁰ N-Cooling capacity (total) ²¹ N-Cooling capacity (sensible) ²¹	kW kW kW kW kW kW	1 222 23.2 23.2 25.5 23.0	1 29.7 29.7 35.5 32.0	1 332 34.9 34.9 38.6 34.7	442 46.3 42.9 47.6 42.6	482 51.5 47.9 54.0 47.9	602 63.8 60.2 68.6 60.8	692 72.2 66.3 75.1 66.0	852 87.3 76.7 88.9 76.3	105 104. 88. 97.4 84.4
Cand Dualfluid-Units, double circuit (and Dualfluid-Units, double circuit (c-cooling capacity (total) ¹⁰ (c-cooling capacity (sensible) ¹⁰ (v-cooling capacity (sensible) ²¹ (v-cooling capacity (sensible) ²¹ (flow	kW kW kW kW kW m³/h	1 222 23.2 23.2 25.5 23.0 6,600	1 29.7 29.7 35.5 32.0 9,100	1 332 34.9 34.9 38.6 34.7 9,900	442 46.3 42.9 47.6 42.6 11,900	482 51.5 47.9 54.0 47.9 13,500	602 63.8 60.2 68.6 60.8 17,300	692 72.2 66.3 75.1 66.0 18,900	852 87.3 76.7 88.9 76.3 21,000	105 104 88. 97. 84. 24,0
And Dualfluid-Units, double circuit D/ASU xxx A/G/GE1/ACW/GCW (-Cooling capacity (total) ¹⁰ (-Cooling capacity (sensible) ¹⁰ V-Cooling capacity (sensible) ²¹ V-Cooling capacity (sensible) ²¹ flow mpressor absorbed power	kW kW kW kW kW m³/h kW	1 222 23.2 25.5 23.0 6,600 4.6	1 29.7 29.7 35.5 32.0 9,100 5.6	1 332 34.9 38.6 34.7 9,900 7.2	442 46.3 42.9 47.6 42.6 11,900 9.6	482 51.5 47.9 54.0 47.9 13,500 10.6	602 63.8 60.2 68.6 60.8 17,300 12.8	692 72.2 66.3 75.1 66.0 18,900 14.4	852 87.3 76.7 88.9 76.3 21,000 18.4	105 104 88. 97. 84. 24,0 22.
And Dualfluid-Units, double circuit D/ASU xxx A/G/GE1/ACW/GCW (-Cooling capacity (total) ¹⁰ (-Cooling capacity (sensible) ¹⁰ V-Cooling capacity (sensible) ²¹ V-Cooling capacity (sensible) ²¹ flow mpressor absorbed power	kW kW kW kW kW m³/h	1 222 23.2 23.2 25.5 23.0 6,600	1 29.7 29.7 35.5 32.0 9,100	1 332 34.9 34.9 38.6 34.7 9,900	442 46.3 42.9 47.6 42.6 11,900	482 51.5 47.9 54.0 47.9 13,500	602 63.8 60.2 68.6 60.8 17,300	692 72.2 66.3 75.1 66.0 18,900	852 87.3 76.7 88.9 76.3 21,000	105 104. 88. 97.3 84.4 24,00 22.0 200
Cand Dualfluid-Units, double circuit (Cand Dualfluid-Units, double circuit (D/ASU xxx A/G/GE1/ACW/GCW (-Cooling capacity (total) ¹⁰ (-Cooling capacity (sensible) ¹⁰ V-Cooling capacity (sensible) ²¹ V-Cooling capacity (sensible) ²¹ rflow mpressor absorbed power Max. av. ESP	kW kW kW kW m ³ /h kW Pa	1 222 23.2 25.5 23.0 6,600 4.6 520	272 29.7 29.7 35.5 32.0 9,100 5.6 170	1 332 34.9 38.6 34.7 9,900 7.2 310	442 46.3 42.9 47.6 42.6 11,900 9.6 530	482 51.5 47.9 54.0 47.9 13,500 10.6 390	602 63.8 60.2 68.6 60.8 17,300 12.8 160	692 72.2 66.3 75.1 66.0 18,900 14.4 290	852 87.3 76.7 88.9 76.3 21,000 18.4 420	105 104. 88. 97. 84. 24,00 22. 200 59.
And Dualfluid-Units, double circuit SD/ASU xxx A/G/GE1/ACW/GCW (-Cooling capacity (total) ¹⁰ (-Cooling capacity (sensible) ¹⁰ V-Cooling capacity (sensible) ²¹ W-Cooling capacity (sensible) ²¹ flow mpressor absorbed power Max. av. ESP Noise Level ³¹ Fan absorbed power	kW kW kW kW kW kW kW kW kW a kW	1 222 23.2 23.2 25.5 23.0 6,600 4.6 520 51.3	1 29.7 29.7 35.5 32.0 9,100 5.6 170 53.3	1 332 34.9 34.9 38.6 34.7 9,900 7.2 310 55.5	442 46.3 42.9 47.6 42.6 11,900 9.6 530 52.6	482 51.5 47.9 54.0 47.9 13,500 10.6 390 55.3	602 63.8 60.2 68.6 60.8 17,300 12.8 160 55.1	692 72.2 66.3 75.1 66.0 18,900 14.4 290 57.3	852 87.3 76.7 88.9 76.3 21,000 18.4 420 56.5	105 104. 88. 97. 84. 24,0 22. 200 59. 5.9
A cooling capacity (total) ²⁰ A cooling capacity (total) ²⁰ A cooling capacity (sensible) ²⁰ A cooling capacity (se	kW kW kW kW kW kW kW kW kW kW kW kW	1 222 23.2 25.5 23.0 6,600 4.6 520 51.3 1.0	1 29.7 29.7 35.5 32.0 9,100 5.6 170 53.3 1.4	1 332 34.9 38.6 34.7 9,900 7.2 310 55.5 1.9	442 46.3 42.9 47.6 42.6 11,900 9.6 530 52.6 1.9	482 51.5 47.9 54.0 47.9 13,500 10.6 390 55.3 2.7	602 63.8 60.2 68.6 60.8 17,300 12.8 160 55.1 3.0	692 72.2 66.3 75.1 66.0 18,900 14.4 290 57.3 4.0	852 87.3 76.7 88.9 76.3 21,000 18.4 420 56.5 4.0	105 104 88. 97. 84. 24,0 22. 200 59. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
And Dualfluid-Units, double circuit SD/ASU xxx A/G/GE1/ACW/GCW (-Cooling capacity (total) ¹⁰ (-Cooling capacity (sensible) ¹⁰ V-Cooling capacity (sensible) ²¹ W-Cooling capacity (sensible) ²¹ flow mpressor absorbed power Max. av. ESP Noise Level ³¹ Fan absorbed power	kW kW kW kW kW kW kW kW kW kW kW Pa dBA kW Pa	1 222 23.2 25.5 23.0 6,600 4.6 520 51.3 1.0 470	1 272 29.7 35.5 32.0 9,100 5.6 170 53.3 1.4 150	1 332 34.9 38.6 34.7 9,900 7.2 310 55.5 1.9 290	442 46.3 42.9 47.6 42.6 11,900 9.6 530 52.6 1.9 340	482 51.5 47.9 54.0 47.9 13,500 10.6 390 55.3 2.7 220	602 63.8 60.2 68.6 60.8 17,300 12.8 160 55.1 3.0 140	692 72.2 66.3 75.1 66.0 18,900 14.4 290 57.3 4.0 260	852 87.3 76.7 88.9 76.3 21,000 18.4 420 56.5 4.0 270	105 104 88. 97. 24,0 22. 200 59. 5. 5. 350 56.
And Dualfluid-Units, double circuit SD/ASU xxx A/G/GE1/ACW/GCW (-Cooling capacity (total) ¹⁰ (-Cooling capacity (sensible) ¹⁰ V-Cooling capacity (sensible) ²¹ V-Cooling capacity (sensible) ²¹ V-Cooling capacity (sensible) ²¹ More capacity (sensible) ²¹ Max. av. ESP Noise Level ³³ Fan absorbed power Max. av. ESP	kW kW kW kW kW kW kW kW Pa dBA kW Pa dBA	1 222 23.2 25.5 23.0 6,600 4.6 520 51.3 1.0 470 52.4	1 29.7 29.7 35.5 32.0 9,100 5.6 170 53.3 1.4 150 53.9	1 332 34.9 38.6 34.7 9,900 7.2 310 55.5 1.9 290 55.7	442 46.3 42.9 47.6 42.6 11,900 9.6 530 52.6 1.9 340 50.6	482 51.5 47.9 54.0 47.9 13,500 10.6 390 55.3 2.7 220 52.6	602 63.8 60.2 68.6 60.8 17,300 12.8 160 55.1 3.0 140 56.1	692 72.2 66.3 75.1 66.0 18,900 14.4 290 57.3 4.0 260 57.9	852 87.3 76.7 88.9 76.3 21,000 18.4 420 56.5 4.0 270 54.2	105 104. 88. 97. 84. 24,00 22. 200 59. 59. 59. 350 56. 55.
And Dualfluid-Units, double circuit SD/ASU xxx A/G/GE1/ACW/GCW (-Cooling capacity (total) ¹⁰ (-Cooling capacity (sensible) ¹⁰ V-Cooling capacity (sensible) ²¹ V-Cooling capacity (sensible) ²¹ V-Cooling capacity (sensible) ²¹ More capacity (sensible) ²¹ Max. av. ESP Noise Level ³³ Fan absorbed power Max. av. ESP	kW kW kW kW kW m ³ /h kW Pa dBA kW Pa dBA kW	1 222 23.2 25.5 23.0 6,600 4.6 520 51.3 1.0 470 52.4 1.2	1 29.7 29.7 35.5 32.0 9,100 5.6 170 53.3 1.4 150 53.9 1.6	1 332 34.9 38.6 34.7 9,900 7.2 310 55.5 1.9 290 55.7 2.1	442 46.3 42.9 47.6 42.6 11,900 9.6 530 52.6 1.9 340 50.6 2.0	482 51.5 47.9 54.0 47.9 13,500 10.6 390 55.3 2.7 220 52.6 2.8	602 63.8 60.2 68.6 60.8 17,300 12.8 160 55.1 3.0 140 56.1 3.4	692 72.2 66.3 75.1 66.0 18,900 14.4 290 57.3 4.0 260 57.9 4.4	852 87.3 76.7 88.9 76.3 21,000 18.4 420 56.5 4.0 270 54.2 3.8	105 104. 88. 97. 84. 24,00 22. 200 59. 59. 350 56. 5. 55. 90
And Dualfluid-Units, double circuit SD/ASU xxx A/G/GE1/ACW/GCW (-Cooling capacity (total) ¹⁰ (-Cooling capacity (sensible) ¹⁰ V-Cooling capacity (sensible) ²¹ V-Cooling capacity (sensible) ²¹ V-Cooling capacity (sensible) ²¹ More capacity (sensible) ²¹ Max. av. ESP Noise Level ³³ Fan absorbed power Max. av. ESP	kW kW kW kW kW m ³ /h kW Pa dBA kW Pa dBA kW Pa dBA kW Pa	1 222 23.2 25.5 23.0 6,600 4.6 520 51.3 1.0 470 52.4 1.2 420	1 29.7 29.7 35.5 32.0 9,100 5.6 170 53.3 1.4 150 53.9 1.6 80	1 332 34.9 38.6 34.7 9,900 7.2 310 55.5 1.9 290 55.7 2.1 200	442 46.3 42.9 47.6 42.6 11,900 9.6 530 52.6 1.9 340 50.6 2.0 490	482 51.5 47.9 54.0 47.9 13,500 10.6 390 55.3 2.7 220 52.6 2.8 340	602 63.8 60.2 68.6 60.8 17,300 12.8 160 55.1 3.0 140 55.1 3.0 140 56.1 3.4 340	692 72.2 66.3 75.1 66.0 18,900 14.4 290 57.3 4.0 260 57.9 4.4 190	852 87.3 76.7 88.9 76.3 21,000 18.4 420 56.5 4.0 270 56.5 4.0 270 54.2 3.8 330	105 104, 88, 97, 24,00 22,0 200 59, 5,9 350 56,1 5,55 90 60,1
Zee Cand Dualfluid-Units, double circuit D/ASU xxx A/G/GE1/ACW/GCW C-Cooling capacity (total) ¹⁰ C-Cooling capacity (sensible) ¹⁰ N-Cooling capacity (sensible) ¹⁰ N-Cooling capacity (sensible) ¹⁰ N-Cooling capacity (sensible) ¹⁰ More capacity (sensible) ¹⁰ Max. av. ESP Noise Level ¹³ Fan absorbed power Max. av. ESP Noise Level ³⁰ Fan absorbed power Max. av. ESP Noise Level ³⁰ Fan absorbed power	: (2 compresso kW kW kW kW m ³ /h kW Pa dBA kW Pa dBA kW Pa dBA	1 222 23.2 25.5 23.0 6,600 4.6 520 51.3 1.0 470 52.4 1.2 420 52.1	1 29.7 29.7 35.5 32.0 9,100 5.6 170 53.3 1.4 150 53.9 1.6 80 53.6	1 332 34.9 38.6 34.7 9,900 7.2 310 55.5 1.9 290 55.7 2.1 200 55.7	442 46.3 42.9 47.6 42.6 11,900 9.6 530 52.6 1.9 340 50.6 2.0 490 52.9	482 51.5 47.9 54.0 47.9 13,500 10.6 390 55.3 2.7 220 52.6 2.8 340 55.6	602 63.8 60.2 68.6 60.8 17,300 12.8 160 55.1 3.0 140 55.1 3.0 140 56.1 3.4 340 55.8	692 72.2 66.3 75.1 66.0 18,900 14.4 290 57.3 4.0 260 57.9 4.4 190 57.7	852 87.3 76.7 88.9 76.3 21,000 18.4 420 56.5 4.0 270 56.5 4.0 270 54.2 3.8 330 57.1	105: 104. 88. 97.8 84.4 24,00 22.0 200 59.4 5.9 350 56.6 5.5 5 90 60.0
 Fan absorbed power Fan absorbed power Fan absorbed power Cand Dualfluid-Units, double circuit Cooling capacity (total)¹⁰ Cooling capacity (sensible)¹⁰ Cooling capacity (sensible)²⁰ Cooling capacity (sensible)²⁰ Cooling capacity (sensible)²⁰ Cooling capacity (sensible)²⁰ Mocooling capacity (sensible)²⁰ Moise Level³⁰ Fan absorbed power Max. av. ESP Noise Level³⁰ Fan absorbed power Max. av. ESP Noise Level³⁰ Fan absorbed power 	: (2 compresso kW kW kW m ³ /h kW Pa dBA kW Pa dBA kW Pa dBA kW kW	1 222 23.2 25.5 23.0 6,600 4.6 520 51.3 1.0 470 52.4 1.2 420 52.1 1.3	1 29.7 29.7 35.5 32.0 9,100 5.6 170 53.3 1.4 150 53.9 1.6 80 53.6 1.8	1 332 34.9 38.6 34.7 9,900 7.2 310 55.5 1.9 290 55.7 2.1 200 55.7 2.3	442 46.3 42.9 47.6 42.6 11,900 9.6 530 52.6 1.9 340 50.6 2.0 490 52.9 2.1	482 51.5 47.9 54.0 47.9 13,500 10.6 390 55.3 2.7 220 52.6 2.8 340 55.6 3.0	602 63.8 60.2 68.6 60.8 17,300 12.8 160 55.1 3.0 140 55.1 3.0 140 56.1 3.4 340 55.8 3.6	692 72.2 66.3 75.1 66.0 18,900 14.4 290 57.3 4.0 260 57.9 4.4 190 57.7 4.7	852 87.3 76.7 88.9 76.3 21,000 18.4 420 56.5 4.0 270 54.2 3.8 330 57.1 4.7	105: 104. 88.: 97.: 84.4 24,00 22.0 200 59.4 5.9 350 56.: 5.5 56.: 5.5 900 60.0 (6.9 250
 Fan absorbed power M-Cooling capacity (total)²⁰ N-Cooling capacity (sensible)²⁰ N-Cooling capacity (sensible)²⁰ M-Cooling capacity (sensible)²⁰ Moise Level³⁰ Fan absorbed power Max. av. ESP Noise Level³⁰ Fan absorbed power Max. av. ESP Noise Level³⁰ Fan absorbed power Max. av. ESP Noise Level³⁰ Fan absorbed power Max. av. ESP Moise Level³⁰ Fan absorbed power Max. av. ESP Moise Level³⁰ Fan absorbed power Max. av. ESP Moise Level³⁰ Fan absorbed power 	: (2 compresso kW kW kW kW m ³ /h kW Pa dBA kW Pa dBA kW Pa dBA kW Pa dBA	1 222 23.2 25.5 23.0 6,600 4.6 520 51.3 1.0 470 52.4 1.2 420 52.1 1.3 370	1 29.7 29.7 35.5 32.0 9,100 5.6 170 53.3 1.4 150 53.9 1.6 80 53.6 1.8 60	1 332 34.9 34.9 38.6 34.7 9,900 7.2 310 55.5 1.9 290 55.7 2.1 200 55.7 2.1 200 55.7 2.3 180	442 46.3 42.9 47.6 42.6 11,900 9.6 530 52.6 1.9 340 50.6 2.0 490 52.9 2.1 280	482 51.5 47.9 54.0 47.9 13,500 10.6 390 55.3 2.7 220 52.6 2.8 340 55.6 3.0 380	602 63.8 60.2 68.6 60.8 17,300 12.8 160 55.1 3.0 140 55.1 3.0 140 56.1 3.4 3.4 340 55.8 3.6 320	692 72.2 66.3 75.1 66.0 18,900 14.4 290 57.3 4.0 260 57.9 4.4 190 57.7 4.7 170	852 87.3 76.7 88.9 76.3 21,000 18.4 420 56.5 4.0 270 54.2 3.8 330 57.1 4.7 4.7	4 105: 104: 88: 97: 84: 24,00 22: 200 59: 90 59: 55: 90 60: 60: 60: 60: 60: 60: 60: 75: 70: 75: 90 60: 60: 75: 70: 75: 75: 75: 75: 75: 75: 75: 75: 75: 75

²⁾ CW-coil capacity for ACW,GCW-Units ; Return air: 24 °C, 50 % r. H. ; Water temperature: 7 °C/12 °C

³⁾ Sound Pressure level at 2 m distance, free field

Dimensions / Weight / No of fans									
Size		1	2	3	4	5			
Width	mm	1,000	1,400	1,750	2,150	2,550			
Height	mm	1,980	1,980	1,980	1,980	1,980			
Depth	mm	890	890	890	890	890			
Weight A/ACW (max. per size)	kg	406/451	484/534	710/765	786/846	923/988			
Weight G/GCW, GE1, GE2 (max. per size)	kg	435/465	545/580	780/820	885/958	1,035/1,094			
No of fans		1	1	2	2	3			

Technical specifications CyberAir

ALD/ALU xxx A/G/GE2		171	201	241	301	351	431	521	661	791
X-Cooling capacity (total) ¹⁾	kW	18.1	21.0	26.3	32.5	36.3	45.1	54.8	70.7	85.9
X-Cooling capacity (sensible) ¹⁾	kW	17.9	21.0	24.8	30.9	35.9	45.1	49.6	64.2	73.7
CW-Cooling capacity (total) ²⁾	kW	18.8	21.8	26.5	32.4	37.5	46.3	53.4	75.0	87.4
W-Cooling capacity (sensible) ²⁾	kW	17.5	20.3	24.4	29.9	34.4	42.8	48.1	65.4	73.7
Airflow	m³/h	4,900	5,800	6,900	8,500	9,900	12,500	13,500	17,700	19,60
Compressor absorbed power	kW	3.7	4.2	5.3	6.4	7.2	9.2	11.0	14.6	18.3
E Max. av. ESP	Ра	590	540	450	730	670	460	410	590	500
Noise Level ³⁾	dBA	40.1	43.6	47.3	45.5	48.7	48.1	49.7	52.8	55.0
Koise Level ³⁾ Fan absorbed power Max. av. ESP Noise Level ³⁾	kW	0.2	0.4	0.6	0.7	1.1	1.2	1.5	2.4	3.3
Max. av. ESP	Ра	580	530	440	520	450	450	400	640	570
Max. av. ESP Noise Level ³⁾ Fan absorbed power	dBA	43.6	46.2	49.1	45.4	47.7	50.7	52.0	51.6	53.3
	kW	0.3	0.5	0.8	0.8	1.2	1.4	1.7	2.4	3.2
E Max. av. ESP	Ра	560	500	400	710	640	420	360	530	420
Noise Level ³⁾	dBA	40.4	43.9	47.6	45.9	49.1	48.6	50.2	53.5	55.6
Fan absorbed power	kW	0.3	0.5	0.8	0.8	1.2	1.4	1.7	2.8	3.8
Max. av. ESP	Pa	550	490	380	490	410	410	350	590	500
Max. av. ESP Noise Level ³⁾ Fan absorbed power	dBA	44.1	46.7	49.5	47.0	49.3	51.2	52.4	52.7	54.3
Fan absorbed power	kW	0.4	0.6	0.9	1.0	1.4	1.6	2.0	2.9	3.8
ize		2	2	2	3	3	4	4	5	5
LD/ALU xxx A/G/GE2		222	272	332	442	482	602	692		
owNoise DX and Dualfluid-Units, do	ouble circuit (2 c									
DX-Cooling capacity (total) ¹⁾	kW	23.4	29.8	35.6	46.9	53.3	63.6	72.9		
X-Cooling capacity (sensible) ¹⁾	kW	23.4	29.8	35.3	43.0	48.2	60.3	66.4		
CW-Cooling capacity (total) ²⁾	kW	24.4	31.5	36.6	45.9	51.7	69.9	77.4		
CW-Cooling capacity (sensible) ²⁾	kW	22.8	29.9	33.6	41.7	46.7	62.0	67.5		
Airflow	m³/h	6,600	8,800	9,700	11,700	13,100	17,100	18,400		
Compressor absorbed power	kW	4.6	5.6	7.2	9.6	10.6	12.8	14.4		
🖕 Max. av. ESP	Ра	480	720	680	500	430	620	560		
Max. av. ESP Noise Level ³⁾	dBA	46.4	46.2	48.2	46.7	49.1	52.0	53.6		
Fan absorbed power	kW	0.6	0.8	1.1	1.0	1.3	2.2	2.7		
Noise Level ³⁾ Fan absorbed power Max. av. ESP Noise Level ³⁾	Pa	470	510	460	490	420	430	380		
Max. av. ESP Noise Level ³⁾ Fan absorbed power	dBA	48.4	45.9	47.4	49.6	51.5	50.9	52.0		
	kW	0.7	0.9	1.2	1.2	1.6	2.2	2.6		
➡ Fan absorbed power	Pa	430	700	650	460	390	560	490		
Mary and ECD	rd		46.6	48.6	46.9	49.6	52.7	54.3		
Mary and ECD	dBA	46.7	40.0			1.6	2.6	3.2		
Max. av. ESP Noise Level ³⁾		46.7 0.7	0.9	1.2	1.2	1.6	2.0	5.2		
Max. av. ESP Noise Level ³⁾ Fan absorbed power	dBA			1.2 420	1.2 450	380	610	560		
Max. av. ESP Noise Level ³⁾ Fan absorbed power	dBA kW	0.7	0.9							
Max. av. ESP Noise Level ³³ Fan absorbed power Max. av. ESP	dBA kW Pa	0.7 420	0.9 470	420	450	380	610	560		

 $^{\scriptscriptstyle 1)}$ Evaporator capacity for A,G,GE-Units ; Return air: 24 °C, 50 % r. H.

 $^{\rm 2)}$ CW-coil capacity for GE2-Units ; Return air: 24 °C, 50 % r. H. ; Water inlet temperature: 7 °C

³⁾ Sound Pressure level at 2 m distance, free field

Humidifer capacity and el. heating capacity									
Size	1	2	3	4	5				
Humidifier capacity kg/h	5	8	8	8	15				
max. no. of heating steps	3	3	3	3	3				
Heating capacity Step 1 kW	4/9	4/9	4/9	4/9	4/9				
Heating capacity Step 2 kW	4	4	4/9	4/9	4/9				
Heating capacity Step 3 kW	4	4	4	4	4/9				
max. total heating capacity kW	12	12	18	18	27				

Technical data subject to change without notice.

Technical specifications CyberAir CW

CW-Units (1 chilled water circuit)											
ASD/ASU xxx CW		300	400	500	660	740	900	960	1100	1200	1500
CW-Cooling capacity (total) ²⁾	kW	30.1	38.8	54.1	68.1	75.5	89.8	101.8 4)	114.7 4)	121.0 ⁴⁾	146.2 4)
CW-Cooling capacity (sensible) ²⁾	kW	25.6	33.1	43.0	54.9	63.9	75.7	82.04)	92.6 ⁴⁾	99.0 ⁴⁾	120.1 ⁴⁾
Airflow	m³/h	6,500	8,500	10,000	13,000	16,000	19,000	19,500	22,000	24,000	29,000
E Max. av. ESP	Ра	420	140	670	450	410	140	330	70	410	110
Noise Level ³⁾ Fan absorbed power	dBA	46.0	51.6	48.8	54.5	54.5	58.2	57.8	60.4	55.6	59.7
	kW	0.7	1.6	1.1	2.4	3.1	5.1	3.6	5.2	4.6	8.0
A Max. av. ESP Noise Level ³	Pa	400	370	650	430	400	120	330	60	370	120
Max. av. ESP Noise Level ³⁾ Fan absorbed power	dBA	48.5	53.1	50.7	55.0	55.8	58.6	58,4	60.5	57.0	59.6
Fan absorbed power	kW	0.8	1.8	1.3	2.7	3.4	5.5	3.9	5.5	5.4	8.3
Size		1	1	2	2	3	3	4	4	5	5
CW2-Units (2 chilled water circuits)											
ASD/ASU xxx CW2		330	560	650	950	1200					
CW-Cooling capacity (total) ²⁾	kW	26.0	48.8	62.7	78.6	103.0					
CW-Cooling capacity (sensible) ²⁾	kW	24.0	43.5	55.1	69.0	89.3					
Airflow	m³/h	7,500	13,000	16,000	20,000	26,000					
E Max. av. ESP	Pa	410	360	240	100	220					
Noise Level ³⁾	dBA	51.4	55.4	56.4	58.8	58.1					
Fan absorbed power	kW	1.5	2.9	4.3	5.4	6.8					
Noise Level ³ Fan absorbed power Max. av. ESP Noise Level ³	Pa	260	300	190	90	210					
	dBA	54.9	56.3	57.2	61.7	58.5					
Fan absorbed power	kW	1.9	3.4	4.9	5.7	7.2					
			2	3	4	5					

Note: All data valid for 400V/3ph/50Hz with 20Pa ESP (external static pressure) at downflow units and 50Pa ESP at upflow units ²⁾ CW-coil capacity for CW,CW2-Units ; Return air: 24 °C, 50 % r. H. ; Water temperature: 7 °C/12 °C

Sound Pressure level at 2 m distance, free field

⁹ Indicated data for downflow units. Cooling capacity for upflow units is approx. 10 % less. For details see StulzSelect.

Humidifer capacity and el. heating capacity									
Size		1	2	3	4	5			
Humidifier capacity	kg/h	5	8	8	8	15			
Max. no. of heating steps		3	3	3	3	3			
Heating capacity Step 1	kW	4/9	4/9	4/9	4/9	4/9			
Heating capacity Step 2	kW	4	4/9	4/9	4/9	4/9			
Heating capacity Step 3	kW	4	4	4	4	4/9			
Max. total heating capacity	kW	12	18	18	18	27			

Dimensions / Weight / No of fans									
Size		1	2	3	4	5			
Width	mm	1,000	1,400	1,750	2,150	2,550			
Height	mm	1,980	1,980	1,980	1,980	1,980			
Depth	mm	890	890	890	890	890			
Weight CW/CW2 (max. per size)	kg	307/357	362/442	547/577	568/608	755/795			
No of fans		1	2	2	2	3			

Technical data subject to change without notice.

You can trust STULZ Competency in consultation and planning

- » Expert advice and planning support
- » Rapid installation and commissioning
- » Customer service without delay
- » Professional documentation

Early planning support and expert advice sets the course for achieving the best possible project solution. STULZ is renowned for its dependable applications advice, with 35 years of experience in air conditioning technology. Through load calculations and energy analysis for CyberAir STULZ can assist the planning engineer and system designer with project development.

Professional documentation

To assist the planning engineer and system designer from tender submission to project completion, STULZ provides professional documentation in form of technical manuals, planning software and layout drawings.

Customer service without

delay

CyberAir units are manufactured from high-quality materials and components that have been checked and repeatedly tested during production. In the unlikely event of a fault, STULZ customer service is available at all times to ensure the continuous availability of the system.

Rapid installation and commissioning

CyberAir units are of a compact design that is factory assembled and pre-wired to offer a fully packaged solution ready for connection to power and water services. This ensures a rapid and uncomplicated installation for the Contractor and very straightforward commissioning. The EC fan can easily be adjusted on site to precisely match the required local operating conditions. In addition, STULZ specialists are happy to assist with commissioning, testing and certification.

STULZ air conditioning technology Creating value – implementing visions

Competency

- » Trend-setting in air conditioning technology
- » International specialist know-how
- » Innovations as client benefit

Reliability

- » Quality which keeps its promise
- » Promises which are reliable
- » Customer proximity, providing safety

Globality

- » Global cooperation
- » International production location
- » Global distribution and service network

Responsibility

- » Forward-looking thought and action
- » Responsibility for people safety for technology
- » Environmentally aware development preserving resources

STULZ GmbH

Holsteiner Chaussee 283 • 22457 Hamburg Sales Germany, Tel.: +49(40)55 85-306 Sales International, Tel.: +49(40)55 85-269 Fax: +49(40)55 85-308 • products@stulz.de

STULZ SUBSIDIARIES

- STULZ AUSTRALIA PTY LTD

 Unit 21, 287 Victoria Rd Rydalmere NSW 2116

 Tel.: +61(2)96 38 70 00 Fax: +61(2)96 38 70 22 sales@stulz.com.au

 E
 STULZ ESPAÑA S.A.

 Calle Lluvia N° 1 28918 Leganés (Madrid)

 Tel.: +34(91)517 83 20 Fax: +34(91)517 83 21 info@stulz.es

 E
 STULZ FRANCE S. A. R. L.

 107, Chemin de Ronde 78290 Croissy-sur-Seine

 Tel.: +33(1)34 80 47 70 Fax: +33(1)34 80 47 79 info@stulz.fr
- GB STULZ U. K. LTD.
 - First Quarter Blenheim Rd. Epsom Surrey KT 19 9 QN Tel.: +44(1372)74 96 66 • Fax: +44(1372)73 94 44 • sales@stulz.co.uk

STULZ S.P.A.

Via Torricelli, 3 • 37067 Valeggio sul Mincio (VR) Tel.: +39(045)633 16 00 • Fax: +39(045)633 16 35 • info@stulz.it

STULZ-CHSPL PVT. LTD.

006, Jagruti Industrial Estate - Mogul Lane, Mahim - Mumbai - 400 016 Tel.: +91(22) 56 66 94 46 - Fax: +91(22) 56 66 94 48 - info@stulz.in

STULZ GROEP B. V. Industriecentrum Bovenkerk • Postbus 75 • 1180 AB Amstelveen Tel.: +31(20)54 51 111 • Fax: +31(20)64 58 764 • stulz@stulz.nl

STULZ POLSKA SP. Z O.O. ul. Włodarzewska 69 • 02 – 384 Warszawa

Tel.: +48(22)883 30 80 = Fax: +48(22)824 26 78 = info@stulz.pl

STULZ AIR TECHNOLOGY SYSTEMS (SATS), INC. 1572 Tilco Drive • Frederick, MD 21704 Tel.: +1(301)620 2033 • Fax: +1(301)662 5487 • info@stulz-ats.com

STULZ the natural choice

Close to you worldwide.

... with expert contacts in our STULZ subsidiaries, and our exclusive global network of sales and service partners. Our five production plants are in Europe, North America and Asia.

