MODEL NOMENCLATURE

CRS-042-G

CRS = CyberRow System
C = Chilled Water
G = Glycol Cooled DX
W = Water Cooled DX
A = Air Cooled DX

Nominal Capacity in 1,000's of BTU Hrs

Notice

This document contains information protected by copyright. All rights are reserved. The owner of the equipment for which this manual is written may photocopy the contents of this manual for internal use only. No part of this document may be photocopied, reproduced, or translated into another language for use by anyone other than the owner of the equipment for which this manual is written without the prior written consent of STULZ Air Technology Systems, Inc. (STULZ).

This document contains confidential and proprietary information of STULZ Air Technology Systems, Inc. Distributing or photocopying this document for external distribution is in direct violation of U.S. copyright laws and is strictly prohibited without the express written consent of STULZ.

Unpublished — rights reserved under the copyright laws of the United States and of other countries. Other brands and tradenames are trademarks of their respective owners.

Copyright 2016 by STULZ Air Technology Systems, Inc.
Printed in the United States of America.
All rights reserved.

STULZ Air Technology Systems, Inc.
1572 Tilco Drive
Frederick, MD 21704
USA
TABLE OF CONTENTS

1.0 Introduction ... 1-1
 1.1 General .. 1-1
 1.2 Product Description 1-1
 1.3 Product Warranty 1-2
 1.4 Safety .. 1-4
 1.4.1 General .. 1-4
 1.4.2 Safety Summary 1-4
 1.5 General Design 1-6
 1.5.1 Electrical Compartment 1-7
 1.5.2 Circuit Breakers/Motor Start Protectors 1-7
 1.5.3 Compressor .. 1-7
 1.5.4 Coils .. 1-7
 1.5.5 Condensate Pump 1-7
 1.5.6 EC Fans ... 1-7
 1.5.7 Temperature/Humidity Sensors 1-8
 1.6 Optional Equipment 1-8
 1.6.1 Remote Supply Temperature/Humidity Sensor 1-8
 1.6.2 Water Detector 1-8
 1.6.3 Smoke Detector 1-8
 1.6.4 Firestat .. 1-8

2.0 Installation ... 2-1
 2.1 Receiving the Equipment 2-1
 2.2 Moving the Equipment 2-1
 2.3 Site Preparation 2-1
 2.4 Mounting/Placement 2-2
 2.5 Air Distribution 2-3
 2.6 Optional Equipment (Field Installed) 2-3
 2.6.1 Remote Water Detectors 2-3
 2.6.2 Remote Temperature/Humidity Sensor 2-4
 2.6.3 Outdoor Condensers 2-4
 2.7 Water-Water/Glycol Cooled DX 2-5
 2.7.1 Piping Connections 2-5
 2.7.2 Split Air Cooled Systems 2-7
 2.8.1 Refrigerant Piping 2-7
 2.8.2 Remote Air Cooled Condensers 2-9
 2.8.3 Condensate Drain Line 2-9
 2.9 Utility Connections 2-10
 2.9.1 Main Power ... 2-10
 2.9.2 Optional Equipment 2-11

2.9.2.1 Remote Water Detector 2-11
 2.9.2.2 Remote Temperature/Humidity Sensor 2-11
 2.9.2.3 Remote On/Off 2-11
 2.9.3 Outdoor Equipment 2-12
 2.10 System Charging Procedures 2-14
 2.10.1 Water-Water/Glycol Cooled Systems 2-14
 2.10.2 Remote Air Cooled Systems 2-14
 2.10.3 Refrigerant Characteristics 2-18
 2.11 Settings & Adjustments 2-18
 2.11.1 Water-Water/Glycol Circuit 2-18
 2.11.2 High/Low Pressure Limit Switch 2-18
 2.11.3 Thermal Expansion Valve 2-18
 2.11.4 Hot Gas Bypass 2-19
 2.11.5 EC Fans .. 2-19

3.0 Start-Up/Commissioning 3-1
 3.1 Initial Operation 3-1
 3.2 Step by Step Start-Up Instructions 3-1
 3.3 Microprocessor Controller Programming 3-1

4.0 *E*² Controller 4-1
 4.1 General ... 4-1
 4.2 Navigating Controller Display Screens 4-4
 4.3 System Operation 4-6
 4.3.1 Setpoint Adjustment 4-8
 4.3.2 Alarms .. 4-9
 4.4 Controller Operation 4-10
 4.5 Menu Screens ... 4-14
 4.5.1 Main Menu ... 4-14
 4.5.2 Information Menu Loop 4-15
 4.5.3 Alarm Log .. 4-18
 4.5.5 Control Menu Loop 4-20
 4.5.6 Service Menu Loop 4-23
 4.6 Communication With The Controller 4-31
 4.6.1 Work Group Set-up 4-31
 4.6.2 Configuring a Work Group 4-32
 4.7 BMS Communication 4-43
 4.8 Troubleshooting the Control I/O Module 4-44
 4.9 BMS Modbus Parameters 4-45
TABLE OF CONTENTS (Continued)

5.0 Maintenance ..5-1
- 5.1 Periodic General Maintenance5-1
- 5.2 Troubleshooting5-3
- 5.3 Field Service ..5-6
 - 5.3.1 Water-W/G System5-6
 - 5.3.2 DX System ...5-6
 - 5.3.3 Refrigeration System Repairs5-6
 - 5.3.4 System Repairs/Component Replacement .5-8

6.0 Product Support6-1
- 6.1 Technical Support6-1
- 6.2 Obtaining Warranty Parts6-1
- 6.3 Obtaining Spare/Replacement Parts6-1

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Typical Internal Layout- CRS-042/084 ...1-6</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Recommended Installation2-2</td>
</tr>
<tr>
<td>Figure 3a</td>
<td>Typical Air Distribution2-3</td>
</tr>
<tr>
<td>Figure 3b</td>
<td>Front Diverted Air Distribution2-3</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Typical W/G Piping Diagram2-5</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Typical Remote Air Cooled DX Piping Diagram2-7</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Sample Nameplate2-10</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Field Wiring- Glycol Systems2-12</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Field Wiring- Remote Condenser2-13</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Main Display Screen3-1</td>
</tr>
<tr>
<td>Figure 10</td>
<td>User Interface Display Panel4-2</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Controller I/O Module4-3</td>
</tr>
<tr>
<td>Figure 12</td>
<td>BMS Interface Ports4-3</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Menu Selections ..4-4</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Control Inputs/Outputs4-10</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Dewpoint Control4-12</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Compressor On/Off Cycle4-12</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Service Menu Loop Selections4-23</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Configuring Multiple A/C Units4-31</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Cleanable Filters5-1</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Cartridge filters5-2</td>
</tr>
</tbody>
</table>

Appendix A - Forms
- Checklist for Completed Installation A-1
- Periodic General Maintenance Checks and Service Checklist A-2

Appendix B - Glossary
- Definition of Terms and Acronyms B-1
1.0 INTRODUCTION

1.1 General

The CyberRow precision data center air conditioning system covered by this manual is designed and manufactured by STULZ Air Technology Systems, Inc. (STULZ) and uses the latest, state-of-the-art control technology. Recognized as a world leader, STULZ provides air conditioning systems using the finest materials available in the industry. The unit will provide years of trouble free service if installed and maintained in accordance with this manual. Damage to the unit from improper installation, operation or maintenance is not covered by the warranty.

STUDY the instructions contained in this manual. They must be followed to avoid difficulties. Spare parts are available from STULZ to insure continuous operation. Using substitute parts or bypassing electrical or refrigeration components in order to continue operation is not recommended and will VOID THE WARRANTY. Due to technical advancements, components are subject to change without notice.

All STULZ CyberRow systems are designed to be installed indoors.

1.2 Product Description

STULZ CyberRow systems are available in Water cooled, Water/Glycol cooled or Air cooled Direct Expansion (DX) configurations. DX based CyberRow systems are designed to operate with R410A refrigerant.

DX based CyberRow cabinets are 12" wide. The cooling capacity in BTU/Hr will depend on the compressor size. Refer to the unit nameplate to identify the capacity of your system.

NOTE

STULZ CyberRow systems have been designed to capture and neutralize heat within close-coupled rack-based environments. Any use beyond what is described in this manual is deemed to be not intended. STULZ is not liable for any damage resulting from improper use.

The functional modes of operation are cooling and dehumidification which provides localized cooling to offset hot spots in data centers.

The CyberRow system captures high temperature (hot aisle) discharge air from adjacent rack-based IT equipment and reintroduces it as conditioned air through the front of the unit (cold aisle).

The system is equipped with highly reliable EC (Electronically Commutated) fans which offer considerable energy cost savings and long life. Using an electronically commutated permanent magnet DC motor, AC inverter whine is eliminated. Fan speed is continuously adjustable via a signal from the system controller without the use of VFD’s. EC fans offer energy efficient, quiet, low vibration operation.

An advanced E² series microprocessor controller is mounted inside the CyberRow electric box. The controller provides the following features: input/output monitoring status, full integrated control of cooling and dehumidification, multi-unit control and remote communication with a Building Management System (BMS). The controller may interface directly to a BMS, allowing the ability to monitor the performance of the air conditioner and adjust operating parameters.

The E² user interface display panel is typically factory mounted on the front access panel of the unit.

Refer Section 4.0 for detailed instructions on operating the system controller.
1.3 Product Warranty

STULZ AIR TECHNOLOGY SYSTEMS, INC.
12 MONTH PRECISION A/C LIMITED WARRANTY /
24 MONTHS PRECISION A/C UPGRADED LIMITED WARRANTY

The 12 month Precision A/C Limited Warranty applies when the Product Support Network Factory Start-Up is not purchased at the time of order entry.

The 24 Month Precision A/C Upgraded Limited Warranty applies only if Factory Start-Up was purchased at the time of Order Entry and Start-Up has been validated by Product Support.

The 12 Month Precision A/C Limited Warranty provided by STULZ Air Technology Systems, Inc. (STULZ) warrants your purchase to be free from defects in material and workmanship. STULZ’ obligation under this warranty is to repair or replace, at its option, any part or parts which are determined by STULZ to be defective for a period of 12 months from the date of shipment when an accurately completed Factory Start-Up Form has been submitted to STULZ, within 180 days from shipment. Parts repaired or replaced under this warranty are shipped FOB Factory, and warranted for the balance of the original warranty period or for 90 days from the date of installation, whichever is greater. If the Factory Start-Up form is not returned to STULZ within 180 days from the date of equipment shipment, the equipment warranty will be terminated on the 181st day from shipment. This limited warranty does not include labor, freon, or any other expense required to replace the defective component and bring the unit back to a working status.

The 24 Month Precision A/C, Upgraded Limited, Warranty provided by STULZ Air Technology Systems, Inc. (STULZ) warrants your purchase to be free from defects in material and workmanship for 24 months. STULZ obligation under this warranty is to repair or replace, at its option, any part or parts which are determined by STULZ to be defective for a period of 24 months from the date of start-up. Parts repaired or replaced under this warranty are shipped FOB factory ground, and warranted for the balance of the original warranty period or for 90 days from the date of installation, whichever is greater. If the factory is not allowed to start the equipment within 180 days from the date of shipment, the warranty will commence on the 181st day from equipment shipment. This limited warranty does not include labor, freon, or any other expense required to replace the defective component and bring the unit back to a working status.

STULZ Air Technology System’s warranty does not cover failures caused by improper installation, abuse, misuse, alteration, misapplication, improper or lack of maintenance, negligence, accident, normal deterioration (including wear and tear), or the use of improper parts or improper repair.

Purchaser’s remedies are limited to replacement or repair of non-conforming materials in accordance with the written warranty. This warranty does not include costs for transportation, travel expenses, costs for removal or reinstallation of equipment or labor for repairs or replacements made in the field.

If any sample was shown to the buyer, such sample was merely to illustrate the general type and quality of the product, and not to represent that the equipment would necessarily conform to the sample.

This is the only warranty given by the seller, and such warranty is only given to buyer for commercial or industrial purposes. The warranty is not enforceable until the invoice(s) is paid in full.

THIS FOREGOING SHALL CONSTITUTE STULZ’ ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY. IN NO EVENT SHALL STULZ BE LIABLE FOR ANY DEFECT, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES, INCLUDING LOST PROFITS (EVEN IF ADVISED OF THE POSSIBILITY THEREOF) ARISING IN ANY WAY OUT OF THE INSTALLATION, USE OR MAINTENANCE OF THE EQUIPMENT. THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This warranty supersedes all other previously printed warranties dated prior to this document.

WARF-1001 Rev. B; 9/20/10
STULZ offers a two year standard limited warranty as stated on the previous page. Additionally an extended warranty may be purchased on the unit’s compressor. The compressor warranty as stated below will be sent with your unit if the option is purchased and should be retained for future reference. You may consult the factory to verify if the extended compressor warranty was purchased for your system.

STULZ AIR TECHNOLOGY SYSTEMS, INC.

OPTIONAL 60 MONTH COMPRESSOR LIMITED WARRANTY

This warranty applies only when the Product Support Network Factory Start-Up is purchased at the time of order entry.

STULZ#:
Unit Serial #:
Unit Model #:
Warranty Start Date:
Warranty End Date:
Compressor 1 Serial #:
Compressor 2 Serial #:

STULZ Air Technology Systems, Inc. (STULZ) warrants your purchase to be free from defects in material and workmanship for 60 months (original standard 24 months and purchased additional 36 months). STULZ’ obligation under this warranty is to repair or replace, at its option, free of charge to the customer, any part or parts which are determined by STULZ to be defective for a period of 60 months from the date of start-up. Start-up must be completed within the first 180 days from shipment. The 60 month warranty only covers original compressor(s) that were installed by STULZ or a original equipment supplier contracted by STULZ to manufacture equipment solely for STULZ.

Compressors replaced under this warranty are shipped FOB factory ground, and warranted for the balance of the original warranty period or for 90 days from the date of installation, whichever is greater. If the factory is not allowed to start up the equipment within 180 days from the date of shipment, the warranty will commence on the 181st day from equipment shipment.

STULZ Air Technology System’s warranty does not cover failures caused by improper installation, abuse, misuse, alteration, misapplication, improper or lack of maintenance, negligence, accident, normal deterioration (including wear and tear), or the use of improper parts or improper repair. Purchaser’s remedies are limited to replacement or repair of non-conforming materials in accordance with the written warranty. This warranty does not include cost for torch charges, reclaim charges, Freon, transportation, travel expenses, costs for removal or reinstallation of equipment or labor for repairs or replacements made in the field.

If any sample was shown to the buyer, such sample was merely to illustrate the general type and quality of the product, and not to represent that the equipment would necessarily conform to the sample.

This is the only warranty given by the seller, and such warranty is only given to buyers for commercial or industrial purposes. The warranty is not enforceable until the invoice(s) is paid in full.

THIS FOREGOING SHALL CONSTITUTE STULZ’ ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY. IN NO EVENT SHALL STULZ BE LIABLE FOR ANY DEFECT, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES, INCLUDING LOST PROFITS (EVEN IF ADVISED OF THE POSSIBILITY THEREOF) ARISING IN ANY WAY OUT OF THE INSTALLATION, USE OR MAINTENANCE OF THE EQUIPMENT. THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This warranty supersedes all other previously printed warranties dated prior to this document.

WARF-1003 Rev. A; 8/30/10
1.4 Safety

1.4.1 General

STULZ Air Technology Systems, Inc. uses NOTES along with CAUTION and WARNING symbols throughout this manual to draw your attention to important operational and safety information.

A bold text NOTE marks a short message in the information to alert you to an important detail.

A bold text CAUTION safety alert appears with information that is important for protecting your equipment and performance. Be especially careful to read and follow all cautions that apply to your application.

A bold text WARNING safety alert appears with information that is important for protecting you from harm and the equipment from damage. Pay very close attention to all warnings that apply to your application.

A safety alert symbol precedes a general WARNING or CAUTION safety statement.

A safety alert symbol precedes an electrical shock hazard WARNING or CAUTION safety statement.

1.4.2 Safety Summary

The following statements are general guidelines followed by warnings and cautions applicable throughout the manual. Prior to performing any installation, operation, maintenance or troubleshooting procedure, read and understand all instructions, recommendations and guidelines contained within this manual.

CAUTION

All maintenance and/or repairs must be performed by a journeyman, refrigeration mechanic or an air conditioning technician.

CAUTION

When moving the unit it must be kept in its normal installed position. If the unit is not kept level and vertical, damage to the compressors will result.

WARNING

Never operate the unit with any cover, guard, screen panel, etc. removed unless the instructions specifically state otherwise, then do so with extreme caution to avoid personal injury.

CAUTION

Never lift any component in excess of 35 pounds without help. If a lifting device is used to move a unit, ensure it is capable of supporting the unit.

WARNING

When working on electrical equipment, remove all jewelry, watches, rings, etc.

WARNING

Always turn off the service disconnect switch and disconnect the main power supply before beginning work on the equipment. A lock-out tag-out procedure should be followed to ensure that power is not inadvertently reconnected.

WARNING

This unit is fed by incoming power wires. Even with the service disconnect switch in the “Off” position, power may still be “live” between the switch and the main power source. When performing service, always ensure main power is disconnected from the unit.

CAUTION

Equipment may contain components subject to Electrostatic Discharge (ESD). Before attempting to mount or service these electronic devices, ensure you have no charge built up by touching a ground source. When possible, use a wrist-grounding strap when working on or near electronic devices.

CAUTION

Never work on electrical equipment unless another person, who is familiar with the operation and hazards of the equipment and competent in administering first aid, is nearby.
WARNING

All personnel working on or near equipment should be familiar with hazards associated with electrical maintenance. Safety placards/stickers have been placed on the unit to call attention to all personal and equipment damage hazard areas.

WARNING

Refrigerant R410A may be used with this equipment. Death or serious injury may result if personnel fail to observe proper safety precautions. Great care must be exercised to prevent contact of liquid refrigerant or refrigerant gas, discharged under pressure, with any part of the body. The extremely low temperature resulting from the rapid expansion of liquid refrigerant or pressurized gas can cause sudden and irreversible tissue damage.

As a minimum, all personnel should wear thermal protective gloves and face-shield/goggles when working with refrigerant. Application of excessive heat to any component will cause extreme pressure and may result in a rupture.

Exposure of refrigerant to an open flame or a very hot surface will cause a chemical reaction that will form carbonyl chloride (hydrochloric/hydrofluoric acid), a highly poisonous and corrosive gas commonly referred to as PHOSGENE. In its natural state, refrigerant is a colorless, odorless vapor with no toxic characteristics. It is heavier than air and will disperse rapidly in a well-ventilated area. In an unventilated area, it presents a danger as a suffocant.

Always refer to the manufacturer’s MSDS provided with the unit.

CAUTION

Certain maintenance or cleaning procedures may call for the use and handling of chemicals, solvents, or cleaners. Always refer to the manufacturer’s Material Safety Data Sheet (MSDS) prior to using these materials. Clean parts in a well-ventilated area. Avoid inhalation of solvent fumes and prolonged exposure of skin to cleaning solvents. Wash exposed skin thoroughly after contact with solvents.

CAUTION

Do not use cleaning solvents near open flame or excessive heat. Wear eye protection when blowing solvent from parts. The pressure-wash should not exceed 30 psig. Solvent solutions should be disposed of in accordance with local and state regulatory statutes.

WARNING

When performing brazing or debrazing operations, make certain the refrigeration system is fully recovered and purged and dry nitrogen is flowing through the system at the rate of not less than 1-2 CFM (0.03-0.06M³/minute).

CAUTION

The air-intake and discharge areas must be free of obstructions. Ensure access panels are secure and latched into position.

CAUTION

Cooling coils (and associated piping circuits) are pressurized and sealed when they leave the factory. Before installing the interconnecting piping, observe appropriate safety precautions and release the pressure via an available stem valve or schrader valve prior to uncapping the pipes.

CAUTION

After interconnecting piping is installed, the piping system must be cleaned. If solvents/cleaning solutions are used, ensure they are completely flushed from the piping before connecting it to the unit. Failure to do so will result in equipment problems.

CAUTION

When filling the chilled water or water/glycol loop, all air must be bled from the piping system.

WARNING

Do not use chloride based water conditioning additives in the condensate drain pans. This will cause corrosion to occur on the coil fins.
1.5 General Design

The STULZ CyberRow unit is housed in a steel frame type cabinet rated for indoor use. The exterior of the cabinet is coated with a powder coat finish to protect against corrosion. Removable access panels are located on the front and rear of the cabinet for easy access to all components. Operator controls are conveniently located on the front of the cabinet.

NOTE

Customer specified non standard features or design variations may not be described in this manual. Refer to the installation and/or electrical drawings supplied with your unit for details of additional feature(s). In some cases, an addendum to this manual may also be included to further describe the feature(s).

Figure 1 depicts a typical internal layout and identifies the major components of a typical CyberRow unit utilizing Direct Expansion (DX) refrigerant. The location of some components may vary depending on the cooling configuration selected (Water, Water/Glycol or Air Cooled).

![Figure 1- Typical Internal Layout- CRS-042/084]
1.5.1 Electrical Compartment
The electrical components are protected inside an electric box located behind the rear access panel. The electric box cover is safety interlocked with the service disconnect switch (See Figure 1) preventing the cover from being opened when the switch in the On position. The switch must be turned Off to gain access to the electrical compartment.

The service disconnect switch may be used to turn the unit off for emergency shutdown or when routine maintenance is performed. The handle of the switch may be locked in the “Off” position to prevent unintended operation.

1.5.2 Circuit Breakers/Motor Start Protectors
CyberRow units incorporate state of the art component protection with the use of motor start protectors and circuit breakers. If an overload occurs the switches must be manually re-set after the overload condition is cleared.

1.5.3 Compressor
A scroll compressor is utilized in DX based CyberRow systems. With fewer moving parts, scroll compressors have demonstrated superior durability. The scroll compressor is designed around two identical spirals or scrolls that, when inserted together, form crescent shaped pockets. During a compression cycle, one scroll remains stationary while the other scroll orbits around the first. As this motion occurs, gas is drawn into the scrolls and moved in increasingly smaller pockets toward the center. At this point, the gas, now compressed to a high pressure, is discharged from a port in the center if the fixed scroll. During each orbit, several pockets of gas are compressed simultaneously, creating smooth, nearly continuous compression.

1.5.3.1 Electronic Thermal Expansion Valve
An auxiliary control module mounted to the door of the electric box, manages the operation of the electronic expansion valve (EEV). The control module manages the EEV based on input signals from the suction pressure and temperature sensors. It regulates the amount of refrigerant entering the evaporator to maintain the correct superheat temperature.

1.5.3.2 Electronic Hot Gas Bypass
Used for freeze protection and capacity control, an electronically controlled hot gas bypass valve is managed by the same auxiliary control module that manages the EEV valve. The hot gas bypass system allows the compressor to run continuously instead of cycling the compressor on and off for capacity control. The hot gas bypass system manages system capacity based on the suction temperature. The hot gas regulator valve meters hot gas into the evaporator coil during low load periods or when evaporator air flow is reduced.

1.5.4 Coil(s)
Cooling coils are aluminum finned/copper tube construction. The coils are leak tested and cleaned before installation by the factory. Condensate drain pans are provided to collect water condensed by the coils. The drain pans are emptied by a condensate pump that directs the water to a pipe stub located either at the top or the bottom of the A/C unit depending on the piping configuration (see Section 2.7.1.1 and 2.8.1.1).

A float switch is placed in the lower condensate pan to detect if the water level rises. If the condensate pan fails to drain, the float switch signals the controller to annunciate an alarm and turn off the compressor and the fans.

1.5.5 Condensate Pump
A condensate pump is factory installed in the lower drain pan. The pump automatically eliminates condensate water from the drain pan. The pump has an internal float switch which turns the pump on and off based on the water level.

1.5.6 EC Fans
The unit is equipped with three high efficiency, Electronically Commutated (EC) fans. EC fans utilize a brushless motor equipped with permanent magnets and permanently lubricated ball bearings. The fan impellers are backward curved and attached to the rotor casing. The fan is balanced and aerodynamically optimized to minimize vibration.

The fans do not utilize drive belts. Fan speed is variable via a 0 to 10 VDC signal from the system controller. The fan motor is equipped with integral electronics and does not require the addition of secondary electronics such as thermal protection, inverters or filters. The fan will not produce AC inverter whine.
During start up, the fans begin operating in stages with five second time delays. The middle fan starts first, then the upper fan, then the lower fan. The system controller monitors fan operation. If one or two of the fans fail to operate, the controller alerts the operator with an alarm message and increases the speed of the remaining fan(s) to compensate for the loss of air flow.

The system controller may be used to configure the fans for zone temperature control with independently variable fan speeds or with all three fans operating at the same variable speed (See Section 4.4.4).

1.5.7 Temperature/Humidity Sensors

Control and alarm recognition takes place by means of the controller analyzing signal inputs from the sensors to manage the operation of the A/C unit consistent with the setpoints entered in the system controller. The system controller monitors three NTC type temperature sensors and a 4-20 mA temperature/humidity (T/H) sensor.

The NTC sensors are factory installed in pre-determined supply air fan zones inside the cabinet. Each NTC sensor is used by the system controller to manage the speed of the fan for that zone to meet the supply air setpoint temperature. The return air is monitored by a temperature/humidity (T/H) sensor which is typically mounted inside the cabinet. As an option, the return air T/H sensor may be removed from the cabinet and mounted in the hot aisle. The actual sensor values may be viewed from the controller user interface display using the Information menu loop.

1.6 Optional Equipment

1.6.1 Remote Mounted Supply Temperature/Humidity Sensor

As an option, a supply T/H sensor may be provided for field installation (see Section 2.6.2). This is to be mounted in the supply (cold aisle) space for monitoring or control purposes. Refer to the electrical drawing supplied with your unit for wiring details specific to your system.

1.6.2 Water Detector

As an option, STULZ offers spot type or strip/cable type water detectors (see Section 2.6.1). Upon sensing a leak, the water detector control circuit will signal the system controller of the alarm condition. The system controller is programmed to shut down the compressor and the fans when a leak is detected.

1.6.3 Smoke Detector

Optionally mounted in the return air side of the cabinet, a photo-electric smoke detector is used to sense the presence of smoke and signal the controller when a smoke alarm condition exists and shuts down the air conditioner.

1.6.4 Firestat

Optionally mounted in the return air side of the cabinet, a fire detector senses high return air temperature and signals the controller when a fire alarm condition exists and shuts down the air conditioner.
2.0 INSTALLATION

2.1 Receiving the Equipment

Your CyberRow precision A/C system has been tested and inspected prior to shipment. Carefully remove the protective packaging and perform a visual inspection of the equipment immediately upon delivery to confirm that your equipment has been received in excellent condition. Remove the access panels and thoroughly inspect the interior of the unit for any signs of transit-incurred damage. If there is shipping damage, it must be noted on the freight carrier’s delivery forms BEFORE signing for the equipment. Any freight claims MUST be done through the freight carrier. STULZ ships all equipment FOB. STULZ can assist in the claim filing process with the freight carrier. Should any damage be present, notify STULZ Product Support prior to attempting any repairs. Refer to Section 6.0 of this manual for instructions.

A unit Data Package has been sent with your unit. It contains this manual, system drawings, applicable MSDS’s, warranty registration, other component manuals and applicable instructions based on the configuration of your unit. The data package has been placed in your unit in a clear plastic bag. These documents need to be retained with the unit for future reference. The unit should always be stored indoors in a dry location prior to installation.

NOTE

Items that have been shipped loose, such as the controller display panel, temperature/humidity sensors, water detectors, etc., are shipped inside the air conditioner unless specified otherwise by the customer. Unpack and store these items in a safe place unless you are using them immediately.

2.2 Moving the Equipment

CyberRow systems are designed to be kept in a vertical position. The cabinet is equipped with shipping support brackets which are bolted to the skid to facilitate moving the unit prior to installation. Move the unit on the skid with a suitable device such as a forklift, pallet jack or roller bar and dollies which are capable of handling the weight of the equipment. For reference, a weight table is provided on the installation drawing. Unbolt the shipping support brackets from the skid, leaving them attached to the unit during the installation process.

CAUTION

Tipping Danger. Keep the shipping support brackets attached to the front and rear of the cabinet after removing the CyberRow unit from the skid. These must remain in place to prevent the unit from tipping over when moving and positioning the cabinet. It is safe to remove the shipping brackets when a server rack is installed on each side of the cabinet.

CAUTION

Position someone on each side of the cabinet to stop it from tipping over if the shipping brackets must be removed before installing the server racks on each side.

CAUTION

When moving the unit it must be lifted vertically and kept in a level position to prevent damage.

2.3 Site Preparation

Removable access panels are located on the front and rear of the CyberRow cabinet for easy service access. In order to have full service access to the internal components, no permanent obstructions should be placed in front or behind the cabinet.

NOTE

Working clearance requirements need to be established prior to mounting the unit. Refer to local and national electrical codes.

CAUTION

The unit must be installed in the space that will be air conditioned.

CAUTION

Ensure the mounting surface is capable of supporting the weight of the equipment. Before installing the unit, refer to the weight table provided on the installation drawing.

When determining the installation location consider how you’ll route the piping and wiring into the cabinet and ensure access is available (see Section 2.7.1 & 2.8.1). The CyberRow system is ordered from the factory with pilot holes for piping and wiring in either the top or the bottom of the cabinet. See the
installation drawing provided with your unit for the pilot hole locations.

2.3.1 Conditioned Space

Certain steps should be taken to minimize the effects of the environment surrounding the conditioned space. This is especially important for critical/precision room preparation (computer data centers) requiring close tolerance control of temperature and humidity. The conditioned space should be well insulated and include a vapor barrier. The installer should ensure that the proper insulation rating is used based on the design of the space, which was the basis for the system selected. The following table is a recommended minimum R-value (thermal resistance) to ensure optimum equipment operation.

<table>
<thead>
<tr>
<th>STRUCTURE</th>
<th>R-VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling</td>
<td>R-38</td>
</tr>
<tr>
<td>Wall</td>
<td>R-21</td>
</tr>
<tr>
<td>Floor</td>
<td>R-19</td>
</tr>
<tr>
<td>Door</td>
<td>R-5</td>
</tr>
</tbody>
</table>

The vapor barrier is the single most important requirement for maintaining environmental control in the conditioned space. The vapor barrier in the ceiling and walls can be a polyethylene film. Concrete walls and floors should be painted with a rubber or plastic based paint. Doors and windows should be properly sealed and a door sweep used to minimize leakage. Outside or fresh air should be kept to a minimum (as it adds to the cooling load), while maintaining the requirement of the Indoor Air Quality (IAQ) standard. Lack of these steps can cause erratic operation, unstable room control and excessive maintenance costs.

2.4 Mounting/Placement

The CyberRow precision A/C system uses a frame and panel construction for unit rigidity and full service accessibility while the unit is mounted in place.

NOTE

The equipment must be level to operate properly.

CyberRow cabinets are designed to be installed in a row of servers between the server racks (see Figures 2 & 3). They have a compact footprint, which allows the units to be placed adjacent to the heat producing equipment racks anywhere in the row. They provide cool, conditioned air through the front grille to the adjacent server modules on the cold aisle side of the row. It is recommended to position the unit to obtain optimum air circulation. Allow 36” clearance in the front and rear of the cabinet for servicing the unit.

The optimal placement location is next to highly loaded servers that throw off the most significant heat into the hot aisle side of the row. In this arrangement, the CyberRow minimizes hot spots. It is best not to place a CyberRow unit at the end of a row unless an air barrier is in place to prevent the conditioned air from being drawn around to the hot aisle side, bypassing the front of the servers. An air barrier must also be present to prevent conditioned air from being drawn over the top of the row into the hot aisle.

NOTE

Placement of air barriers between the cold aisle/hot aisle is important. If the supply discharge is too close to the hot aisle, the conditioned supply air will be recirculated back to the intake in the hot aisle side of the cabinet before it has circulated through the equipment to be cooled. Once the cabinet is removed from the shipping skid, it may be rolled into position on the casters which are mounted to the bottom of the unit. Do not remove the shipping support brackets unless server racks are installed on each side of the CyberRow cabinet.
The cabinet is equipped with an adjustable foot at each corner to raise the cabinet off the casters after the unit is positioned in its operating location. The adjustable feet are also used for leveling and overall height correction. To adjust the height, use a flat head screwdriver to turn the screws, located at the top of the four caster housings (accessed inside the front & rear corners of the cabinet per Figure 1). Raise or lower each foot until the cabinet is level and even with the adjacent equipment racks (see Figure 2).

2.5 Air Distribution
Air from the hot aisle is drawn into the rear of the CyberRow cabinet and passes through the fins of the cooling coil. The conditioned supply air discharges through the front of the cabinet (see Figure 3a).

Figure 3a- Typical Air Distribution
The front discharge panel directs the supply air out of the CyberRow unit where it will be drawn into the front of the server racks.

An optional front diverted air discharge panel is also available. This directs the supply air sideways out of the CyberRow unit and directly into the front of the server racks (see Figure 3b).

2.6 Optional Equipment (Field Installed)

2.6.1 Remote Water Detectors
The remote water detector is normally placed on the sub-floor or in a field supplied auxiliary drain pan located beneath the unit. STULZ provides 2 types of water detectors:

Spot type water detector-
Remove the protective cover and connect two control wires to the terminals on the base. Run the control wires into the electric box and connect them to the control terminal block as shown in the wiring diagram provided with your unit. Replace the cover and place the water detector(s) on the floor with the metal electrodes facing down. When water is present, current will flow between the electrodes. The base is provided with a mounting hole in the center which may be used to secure the water detector in place.

NOTE
Do not place the spot type water detector on an electrically conductive surface.
Cable type water detector—
Lay the cable water detector flat across the sub-floor where water could collect. Secure the cable every 12-18 inches with J-clips or cable ties with adhesive mounting pads when installing it in the airstream. Secure it at each turn of the cable and when routing it around obstructions. Do not tie the water detector cable to a metal floor stand or to pipes.

When a water leak on the floor reaches the cable, current will flow between the cable wires. A two conductor wire harness is provided with a quick connect fitting on the end. The harness mates to the fitting on the water detector and connects it to the control terminal block inside the electric box as shown in the wiring diagram provided with your unit.

2.6.2 Remote Temperature/Humidity Sensor
Depending on the type of control selected, the temperature/humidity (T/H) sensor may be factory mounted or shipped loose for field installation. The remote sensor must be located so that it will properly sense the temperature/humidity conditions to be controlled. The T/H sensor should not be mounted near a doorway or an area where it would be exposed to direct sunlight. When locating the sensor, consider the length of wire to be used. The sensor is typically provided with a 20 foot long cable. As an option, a 75 foot or 150 foot long cable may be provided. Follow the steps below to mount the sensor.

Temperature /Humidity Sensor
1. Remove the cover from the base of the sensor by squeezing it at the top and bottom.

CAUTION
Take care not to damage the exposed temperature/humidity sensors on the PC board when the cover is removed. The sensors can be damaged if handled improperly.
2. Place the base temporarily against the mounting surface.
3. Level the base. Mark and drill mounting holes through at least two of the available slotted holes.
4. Run the 3 conductor shielded cable through the opening in the base, then secure the base with screws ensuring the word TOP on the PC board is oriented upward.
5. Make the wiring connections. Refer to Section 2.9, Utility Connections and refer to the wiring diagram supplied with your unit.
6. Seal the hole in the wall behind the sensor.
7. Replace the cover plate on the base.

CAUTION
The sensor can be damaged if handled improperly. Take care not to damage the exposed temperature/humidity sensor on the PC board. Do not touch the sensor as this will affect its accuracy.

2.6.3 Outdoor Condensers
Referring to the IOM manual provided with the condenser, install the remote condenser in a secure location where it cannot be tampered with and the service disconnect switch cannot be inadvertently turned off. Locate the remote condenser where the fan is not likely to draw dirt and debris into the coil fins. The clearance around the condenser should be at least 1x the units width to ensure adequate airflow to the coil. Secure the condenser to prevent the system from moving during operation. It is recommended that the remote condenser be installed with vibration mounts to reduce vibration transmitted to the mounting surface.
2.7 Water- Water/Glycol Cooled DX
(CRS-W & CRS-G Models)

The system utilizes an external source of fluid to provide coolant to the condenser inside the A/C unit. No refrigeration connections are required for self-contained water or glycol cooled systems (see Figure 4).

![Figure 4- Typical W/G Piping Diagram](image)

2.7.1 Piping Connections

CAUTION

The cooling coil (and associated piping circuits) are pressurized (up to 100 psi) and sealed when they leave the factory. Before installing the interconnecting piping, release the pressure via an available stem valve or schrader valve prior to uncapping the pipes.

Fluid supply and return lines are routed to either the top or bottom of the cabinet as specified when the CyberRow system is ordered (see Section 2.7.1.1). On units that are piped from the top, the supply and return connections are made outside the cabinet. On units that are piped from the bottom, the supply and return connections are made inside the cabinet.

Pipe connections are threaded NPT connections. The pipes are labeled; i.e. “Supply”, “Return”. When making the connections, a teflon tape thread sealant is recommended to minimize internal fouling of the piping.

Field piping is not necessarily the same size as the units pipe connections. Piping should be sized to match the system pressure drop and flow capacity, and may require reducing fittings to match the connection size on the air conditioner. An air vent and several schrader valves are installed in the precision A/C unit piping. It is recommended to provide manual shut-off valves for both the supply and return fluid for isolating the unit when performing routine maintenance or repairs. Refer to the piping diagram supplied with your unit.

NOTE: A 60-mesh strainer should be installed in the supply pipe. Ensure the strainer is readily accessible for servicing or replacement.
For pipe connection sizes, refer to the following table:

<table>
<thead>
<tr>
<th>Model #</th>
<th>Water Glycol Inlet/Outlet</th>
<th>Condensate Drain</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRS-042-W, -G</td>
<td>1 1/4"</td>
<td>1/2"</td>
</tr>
<tr>
<td>CRS-084-W, -G</td>
<td>1 1/4"</td>
<td>1/2"</td>
</tr>
</tbody>
</table>

NOTE
Use standard refrigeration practices for piping, leak testing and filling the water glycol circuit.

The piping should be isolated by the use of vibration isolating supports. Provide supports (clamps or hangers) as necessary every 5 to 10 feet along piping runs to minimize vibration and noise transmission. To reduce vibration transmission and prevent pipe damage, seal openings in walls using a soft flexible material to pack around the piping. After the piping is installed, seal the gaps between the pipes and the entrance holes so air won’t leak around the pipes.

NOTE
Water/Glycol lines should be insulated to prevent condensation from forming on the pipes if ambient dew point temperatures are higher than the fluid temperatures.

CAUTION
After the interconnecting piping is installed, the entire piping circuit must be thoroughly flushed prior to operating the system.

If newly installed supply and return piping is used, it is recommended that the piping system be cleaned prior to connecting it to the unit. If solvents/cleaning solutions are used, ensure they are completely flushed from the piping before connecting it to the unit. Failure to do so could result in equipment problems.

2.7.1.1 Water-Water/Glycol Supply and Return Piping Connections
2.8 Split Air Cooled Systems
(CRS-A Models)

Split air-cooled systems with a remote condenser will require field installed refrigerant piping. All split systems are shipped with a dry nitrogen charge of 100 psig. Release the pressure via an available stem valve or schrader valve prior to uncapping the pipes. Do not release the pressure until the field installed refrigerant piping is ready to connect. Systems utilizing a remote condenser will require a copper liquid line and discharge line. See Figure 5 and refer to the IOM documentation provided with the condenser.

![Diagram of Split Air Cooled DX Piping Diagram](image)

Figure 5- Typical Remote Air Cooled DX Piping Diagram

2.8.1 Refrigerant Piping

Refrigerant lines for the A/C unit are routed to either the top or bottom of the cabinet as specified when the CyberRow system is ordered (see Section 2.8.1.1). The connections are made inside the cabinet. The pipe stubs are labeled; i.e. “Discharge”, “Liquid Line”.

The refrigerant piping should be isolated by the use of vibration isolating supports. Provide supports (clamps or hangers) as necessary every 5 to 10 feet along piping runs to minimize vibration and noise transmission. To reduce vibration transmission and prevent pipe damage, when sealing openings in walls use a soft flexible material to pack around the piping. After the piping is installed, seal the gaps between the pipes and the entrance holes in the cabinet so air won’t leak around the pipes.

All refrigeration piping should be installed with high temperature brazed joints. Use standard refrigeration practices for piping, leak testing, dehydration and charging of the refrigeration circuits. For copper to copper brazing, phosphorous alloy containing a minimum of 15% silver is recommended. General purpose silver brazing alloy with 45% silver is recommended for brazing dissimilar metals.

Wrap wet rags around the pipes between the areas to be soldered and any nearby refrigeration components to keep excessive heat from traveling through the pipe and causing damage. Clear all pipe connections of debris and prep connections for soldering. Use only “L” or “K” grade refrigerant copper piping. Be careful not to allow solder/piping...
debris to get inside refrigerant lines. Dry nitrogen should be flowing through the tubing while soldering at a rate of not less than 1-2 CFM (0.028-0.57 M 3/minute).

2.8.1.1 DX Refrigerant Piping Connections

2.8.1.2 Refrigerant Pipe Sizing

Refrigerant lines for split systems must be sized according to the piping distance between the evaporator and the condenser. Each valve, fitting and bend in the refrigerant line must be considered in this calculation. Pipe sizes are given for “equivalent feet”, not linear feet. Do not confuse the terminologies. For example, a 7/8” standard 90° elbow has an equivalent length of 1.5 feet; a 7/8” branch Tee has an equivalent length of 3.5 feet. These corrections must be accounted for when sizing your piping.

Note

Refrigerant piping between the CyberRow unit and the remote condenser must not exceed 150 feet (total equivalent length). The maximum level drop from the CyberRow unit to the condenser must not exceed 20 feet.

Note

Consult ASHRAE standards and refer to the Copeland applications data guide for more detailed information regarding refrigerant line traps and line sizing.

Refer to the following table for standard equivalent lengths, in feet, of straight pipe.
Oil traps must be included every 20 feet in the vertical risers and the refrigerant lines must be sloped ¼ inch for every 10 feet in the horizontal lines to ensure proper oil return to the compressor. An inverted trap is required on the discharge line of the remote condenser to help prevent oil and liquid from flooding back to the compressor.

2.8.2 Remote Air Cooled Condensers

Refer to the Recommended Discharge Line and Liquid Line sizing tables below. Systems utilizing air cooled condensers must not have a refrigerant line pressure drop over 14 psig across the condenser and the interconnecting piping to the condenser.

Note

Ensure proper condenser selection to maintain reasonable sub-cooling temperatures.

RECOMMENDED DISCHARGE LINE SIZES

<table>
<thead>
<tr>
<th>CRS Model Number</th>
<th>Equivalent Length Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50' or less</td>
</tr>
<tr>
<td>042</td>
<td>5/8</td>
</tr>
<tr>
<td>084</td>
<td>7/8</td>
</tr>
</tbody>
</table>

*Equivalent Ft. accounts for the linear pipe length as well as equivalent length of Valves, Elbows & Tee’s as shown in the previous table.

RECOMMENDED LIQUID LINE SIZES

<table>
<thead>
<tr>
<th>CRS Model Number</th>
<th>Condenser to A/C Unit / Receiver to Evap. (Equivalent Ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50' or less</td>
</tr>
<tr>
<td>042</td>
<td>1/2</td>
</tr>
<tr>
<td>084</td>
<td>5/8</td>
</tr>
</tbody>
</table>

Vertical runs are based on a total rise of 30 equivalent feet. For longer rises, individual calculations should be made. Sizes assume the use of single risers; double rises may be necessary.

CAUTION ▼

Do not exceed 150 ft maximum Liquid Line length.

If the condenser is installed above the evaporator, the discharge line should include a p-trap at the lowest point in the piping. The highest point in the discharge line should be above the condenser coil and should include an inverted trap to help prevent oil and liquid from flooding back to the compressor during off cycles.

If the condenser is installed below the evaporator, an inverted trap the height of the evaporator coil is required on the liquid line to help prevent oil and liquid from flooding back to the compressor during off cycles.

2.8.3 Condensate Drain Line

A condensate pump is factory installed. The drain line connection is typically a 1/2” FPT fitting. The installer must connect a drain line (customer supplied) to the drain fitting to remove water from the cabinet.

The condensate drain fitting is accessed through the top or bottom of the cabinet as configured with the water/glycol or refrigerant piping connections. The drain fitting is accessed from outside the cabinet on top piped units. The drain fitting is accessed inside the cabinet behind the front discharge panel on bottom piped units. An entrance hole for the drain line is provided in the floor of the fan compartment. See the installation drawing provided with your unit for the location of the condensate drain fitting.

Connect the drain line to the fitting and direct the water to an appropriate place, such as an open building drain with an air gap, per local and national plumbing codes. After the piping is installed, seal the gap between the drain line and the cabinet entrance hole so air won’t leak.

CAUTION ▼

Do not use chloride based water conditioning additives in the condensate drain pans. This will cause corrosion to occur on the coil fins.
2.9 Utility Connections

2.9.1 Main Power

The CyberRow product offering is available in single or three phase variations and a wide range of voltages. It is imperative that the unit nameplate be examined to determine the operating voltage, frequency and phase of the system (see Figure 6). The nameplate also provides the full load amps (FLA), the current the unit will draw under full design load, the minimum circuit ampacity (MCA) for wire sizing, and the maximum fuse or HACR (Heating, Air Conditioning, Refrigeration) breaker size (MAX FUSE/CKT BKR) for circuit protection. The unit's nameplate is located inside the cabinet within the electrical box.

NOTE

If the nameplate states MAX FUSE/CKT BKR, it is required to use fuses or a HACR type circuit breaker to protect the system. Other protection devices are not allowed based upon the product listing.

The unit is provided with terminals for all required field-wiring. Refer to the electrical drawing supplied with the unit for all power and control field-wiring. It is important to identify the options that were purchased with the unit in order to confirm which field connections are required.

NOTE

All wiring must conform to local and national electrical code requirements. Use of copper conductors only is required. Wiring terminations may become loose during transit of the equipment; therefore, it is required to verify that all wiring terminations are secure.

WARNING

Verify power is turned off before making connections to the equipment.

It is important to verify that the main power supply coincides with the voltage, phase and frequency information specified on the system nameplate. The supply voltage measured at the unit must be within ±10% of the voltage specified on the system nameplate except for 208/230V single-phase units which have a different tolerance listed below.

A main distribution panel must be provided with a manual fused disconnect switch or HACR type circuit breaker per local and national electrical codes for service to the equipment. Do not mount a customer supplied manual fused disconnect switch or HACR type circuit breaker to the surface of the unit.

The unit is provided with main power and control pilot holes for connection of the field-wiring conduit. These pilot holes are located on the CyberRow unit based on the configuration. The pilot holes are located in the top of the cabinet or in the floor of the cabinet. A label stating "MAIN POWER INPUT" is placed in close proximity. See the installation drawing provided with your unit for pilot hole locations. Terminate the main power wires at the line side of the service disconnect switch, located within the electric box. A separate equipment ground lug is provided within the electrical box for termination of the earth ground wire.

CAUTION

Prior to unit operation, an adequate unit-to-earth ground must be connected to the unit.
2.9.1.1 Single-Phase Units 208/230V
The supply voltage for units that are designed for 208V operation must have a tolerance within -5% and +10%. If the measured supply voltage is 230V, the unit can operate with a tolerance of ±5% if the following change is made. The control transformers within the system must have the primary wire connected to its respective 240V tap instead of the 208V tap.

2.9.1.2 Three-Phase Units
Three-phase units are designed to have the L1, L2 and L3 supply wires connected to corresponding L1, L2 and L3 line terminals of the non-fused service switch. The unit will operate correctly if the supply wires are connected in this manner.

CAUTION
Improper wire connections will result in the reverse rotation of the fans/blower motors and compressor and may eventually result in damage to the compressor. To correct this problem, exchange any two of the incoming main power wires at the main power service disconnect switch. Do NOT rewire the unit's individual components.

2.9.2 Optional Equipment
Additional control wires may be required depending on the options that were purchased with your unit. Optional sensors are to be connected directly to the control terminal board in the CyberRow electric box. You may route the wires through the top or bottom of the cabinet as preferred using the available knock-outs. Refer to the electrical drawing supplied with your unit to determine the total number of interconnecting conductors required for your system.

NOTE
All wiring must be provided in accordance with local and national electrical code requirements for Class 2 circuits.

It is important to note that the control transformer(s) supplied with the equipment have been sized and selected based upon the expected loads for each system.
2.9.3 Outdoor Equipment

The following sections detail field power wiring required for a typical system. Additional conductors may be required depending on the options purchased with the equipment. Refer to the electrical drawing supplied with your unit for the appropriate field wiring terminations required specifically for your system.

2.9.3.1 Water Cooled Systems (CRS-W Models)

Systems equipped with an internal water cooled condenser do not require field wiring to external components other than to optional sensors as selected (e.g. Flow Sensors, Remote Supply Air T/H sensor, Air Pressure, Customer Alarm Inputs).

2.9.3.2 Glycol Cooled Systems (CRS-G Models)

Glycol-cooled systems equipped with a pump package require field wiring between the A/C unit and the pump package (see Figure 7). The installer must wire two control conductors from the terminal board within the A/C unit, to the pump package electrical box. Refer to the electrical drawings supplied with your unit for the number of field wires needed and for the appropriate wire terminations required for your system.

Figure 7- Interconnecting Field Wiring Glycol Systems
2.9.3.3 Remote Condenser (CRS-A Models)

For systems equipped with a remote condenser, the installer must provide main power wiring to the main power distribution block located within the remote condenser electric box. A separate equipment ground lug is provided within the electrical box for termination of the earth ground wire. Refer to the electrical drawing supplied with your unit and the wiring diagram supplied with the condenser (typically located in the condenser electric box).

Control wires are not required between the remote condenser and the A/C system (see Figure 8). As an option, control wiring may be installed between the A/C system and the condenser for the system controller to enable condenser operation only when the compressor is running. You must remove the jumper from the remote condenser terminal board (see the condenser wiring diagram). Wire 24 VAC control conductors from the terminal board within the A/C unit to the remote condenser terminal board. If control wires aren’t installed (and the jumper remains in place), the condenser is always enabled and will turn on and off based on the condenser’s pressure control settings. Refer to the electrical drawing for the correct number of field wires needed and for the appropriate wire terminations required for your system.

Figure 8- Interconnecting Field Wiring Remote Condenser
2.10 System Charging Procedures

2.10.1 Water-Water/Glycol Cooled Systems

No field refrigerant charging is required for fluid cooled units. The following precautions must be observed when installing and filling the water-water/glycol loop:

• The piping system must be cleaned prior to allowing water or water/glycol to flow through the system.
• Glycol must be mixed with water before it is added to the system. Use only water/glycol solution with inhibitors for corrosion protection.
• When filling the water-water/glycol loop all air must be bled from the piping system.

1. Open a vent valve at highest point of the system.
2. Fill the system until the solution is discharging from the vent with minimal signs of foaming due to air in the system.

2.10.2 Remote Air-Cooled Systems

Remote air-cooled systems are provided with a dry nitrogen holding charge which must be removed before piping and charging the unit. Before charging, check the unit nameplate to confirm the type of refrigerant to use.

NOTE
Refrigerant charging must be performed by a qualified air conditioning technician.

CyberRow systems utilize R410A refrigerant. R410A is a blended refrigerant recognized for being safer for the environment. Refrigerants that are multi-component blends have component parts with different volatilities that result in a change in composition and saturation temperature as evaporation and condensation occur. The composition of liquid R410A refrigerant however, remains relatively constant.

CAUTION
PVE oil is used in systems with R410A refrigerant. PVE oil quickly absorbs moisture when exposed to air. High PVE oil moisture levels react with refrigerant to form acid, which results in system contamination. Keep entire system sealed as much as possible and minimize exposure of PVE oil to outside air.

R410A operates at high pressures which must be considered when checking the operating temperatures/pressures while charging or troubleshooting the system. Tables are provided in Section 2.10.3 showing the temperature/pressure characteristics for R410A.

2.10.2.1 Estimating Refrigerant Charge

When charging a system with R410A refrigerant it will be necessary to weigh in the refrigerant and confirm the charge is correct by checking the superheat and subcooling temperatures (see Section 2.10.2.3).

You can estimate the amount of refrigerant needed by adding the amount of refrigerant required for the A/C unit (Table 1) plus the condenser (Table 2) plus the interconnecting refrigerant piping between the A/C unit and the condenser (Table 3). The values in the tables are the estimated weights for the refrigerant circuit. Table 2 shows the estimated charge weights for STULZ model SCS condensers. Depending upon site specific conditions, refrigerant may need to be added or removed when fine tuning the charge to obtain the correct superheat and subcooling temperatures.

Table 1
Estimated Refrigerant Charge Weight For A/C Unit

<table>
<thead>
<tr>
<th>A/C Unit Model Number</th>
<th>Approximate R410A Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRS-042- A</td>
<td>3.9 lbs</td>
</tr>
<tr>
<td>CRS-084- A</td>
<td>5.2 lbs</td>
</tr>
</tbody>
</table>

Table 2
Estimated Refrigerant Charge Weight For STULZ SCS Condensers

<table>
<thead>
<tr>
<th>SCS Model Number</th>
<th>R410A Charge (less receiver)</th>
<th>R410A Charge (with receiver)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCS-060</td>
<td>2.8 lbs</td>
<td>12.2 lbs</td>
</tr>
<tr>
<td>SCS-096</td>
<td>3.6 lbs</td>
<td>15.7 lbs</td>
</tr>
<tr>
<td>SCS-120</td>
<td>5.4 lbs</td>
<td>23.6 lbs</td>
</tr>
<tr>
<td>SCS-192</td>
<td>8.2 lbs</td>
<td>35.9 lbs</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>Line Size O.D.</th>
<th>Liquid Line</th>
<th>Discharge Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>5.88</td>
<td>1.27</td>
</tr>
<tr>
<td>5/8</td>
<td>9.44</td>
<td>2.03</td>
</tr>
<tr>
<td>7/8</td>
<td>19.62</td>
<td>4.22</td>
</tr>
<tr>
<td>1 1/8</td>
<td>33.44</td>
<td>7.20</td>
</tr>
<tr>
<td>1 3/8</td>
<td>50.95</td>
<td>10.97</td>
</tr>
<tr>
<td>1 5/8</td>
<td>72.11</td>
<td>15.53</td>
</tr>
<tr>
<td>2 1/8</td>
<td>158.29</td>
<td>34.09</td>
</tr>
</tbody>
</table>

Example: Estimate the amount of refrigerant required for a refrigeration circuit in a system using R410A refrigerant consisting of a CRS-042-A unit connected with a 1/2" x 30 foot liquid line and 7/8" x 30 foot discharge line to a STULZ Model SCS-060 condenser.

A/C Unit = 3.9 lbs

+ 1/2" Liquid Line - 30 x 5.88 = 1.764 lbs

+ 7/8" Discharge Line - 30 x 4.22 = 1.266 lbs

+ Condenser = 2.8 lbs

Estimated Refrigerant Charge = 9.73 lbs

(Round off to nearest 0.1 lb = 9.7 lbs)

2.10.2.2 Preparing System For Charging

1. With all the system piping connections made, perform a dry nitrogen leak detection test on the system. Using dry nitrogen only, pressurize the system to 150 psig. Ensure all service and solenoid valves are energized open and that no part of the system is isolated from the pressurized nitrogen.

2. Since there is no refrigerant in the system to detect at this point, leaks may be detected by observing if there’s been a change in the standing pressure after 12 hours. A significant drop in pressure (>10 psig) indicates a leak in the system that needs to be repaired. After the system is determined to be free of leaks, you may evacuate the system.

EVACUATE THE SYSTEM

CAUTION

A proper vacuum must be drawn on the refrigerant system to remove moisture prior to charging. If this is not done the refrigerant charge will combine with moisture in the pipes to form an acid that will eventually lead to compressor failure. A triple evacuation procedure with dry nitrogen is recommended especially for systems with newly installed refrigerant piping.

NOTE

A vacuum pump should be used that is capable of evacuating the entire volume of the A/C system, including newly installed or existing piping. It is essential to use a well maintained pump that is in good operating condition. Always ensure it contains clean, fresh oil. Manufacturers recommend you change the oil in the pump regularly to maintain its ability to remove moisture.

NOTE

Use high quality hoses ensuring they are free of defects and don’t leak. It is recommended to use copper tubing instead of hoses if possible due to the low vacuum that must be attained when evacuating the system. The use of short, large diameter hoses helps reduce evacuation time.

3. After ensuring there are no leaks, relieve pressure and evacuate the entire system while maintaining all the solenoids open. Pull an initial vacuum of 1500 microns or lower using the suction and discharge service ports.

NOTE

When pulling a vacuum, the schrader valves will unnecessarily restrict the openings, increasing the evacuation time. During the evacuation process it is recommended to remove the schrader valve cores with a schrader valve removal tool and draw the vacuum through the port on the removal tool.

4. If you cannot evacuate the system below 1500 microns, close the vacuum pump isolation valve and perform a rate-of-rise test by observing the standing pressure over time. If the pressure rises slowly (up to 200 microns in 15 minutes) it indicates
moisture is in the system that still needs to be boiled off. Proceed to step #5. If the pressure rises rapidly up to atmospheric pressure (more than 50 microns per minute) it indicates a leak that wasn’t detected during step #2. In this case troubleshoot the entire system for leaks and repair them. Then begin the initial evacuation process again starting at step #3.

5. If no leaks are detected after the initial vacuum, release the vacuum and pressurize the system with 2-3 lbs of dry nitrogen. Allow the system to stand for two hours with the dry nitrogen charge. This gives time for the nitrogen molecules to disperse in the system absorbing moisture.

6. After two hours, release the pressure. Then turn on the vacuum pump and evacuate the system a second time down to 1500 microns or less. Close the vacuum pump isolation valve and pressurize the system again with dry nitrogen and allow the system to stand for two hours as in step #5.

7. After two hours release the pressure. Turn on the vacuum pump and complete the process of evacuating the system, this time with a goal of achieving a 250 micron vacuum or less. Close the vacuum pump isolation valve. When you can hold the vacuum at 500 microns or lower for at least 2 hours with no significant rise in pressure, the system is ready to charge.

8. Replace the schrader valve cores if you removed them during the evacuation steps. You may now introduce the refrigerant charge through the schrader valves.

2.10.2.3 Refrigerant Charging Procedures

R410A refrigerant must be weighed in when performing the charge. Referring to Section 2.9.2.1, calculate the estimated amount of refrigerant needed for your system.

When charging a system using a blended refrigerant, it is essential that the composition of the refrigerant is maintained. To ensure correct composition, introduce the refrigerant (R410A) into the system in liquid form rather than vapor form. Cylinders which are not provided with dip tubes should be inverted to allow only liquid refrigerant to charge the system. Keeping the temperature of the cylinder below 85°F will help maintain the correct refrigerant composition while the cylinder is emptied.

WARNING

If refrigerant gas is released in an enclosed area, it may accumulate in low areas and near the floor displacing available oxygen. If a major leak occurs, there is a risk of asphyxiation. In such case the area should be immediately evacuated and ventilated. Personnel should remain away from the area until it is determined to be safe.

INITIAL SYSTEM CHARGE

Follow the step by step instructions below to charge systems using R410A refrigerant. The initial charge will be performed by introducing liquid refrigerant to the discharge side of the compressor or an available liquid line port with the A/C unit turned Off.

1. Bleed air from hoses and break the vacuum by supplying liquid refrigerant (R410A) to the discharge port near the compressor until the pressure is equalized. This holding charge allows the low pressure switch to “hold” enabling the compressor to operate throughout the process of charging the system.

FINE TUNING THE SYSTEM CHARGE

Once the initial charge is completed, refrigerant will need to be added with the unit running.

CAUTION

An adequate heat load must be supplied to ensure a proper charge.

2. Disconnect the refrigerant cylinder from the discharge side of the compressor and connect it to the suction side.

3. Referring to Section 3.0, start the A/C system and use the system controller to lower the room temperature setpoint 3-5°F below actual room temperature thus ensuring cooling remains on as the unit is charged.

When fine tuning the charge on cool days it may be necessary to restrict the airflow across the condenser coil to raise the pressure. The fan closest to the header must be running. When fine tuning the charge, ensure the pressures are correct for the type of refrigerant used. Refer to the tables in Section 2.10.3 for the operating temperature and pressure ranges for R410A refrigerant.
4. Block off a portion of the intake air to the condenser until a constant discharge pressure can be obtained. This will lower the possibility of overcharging. Allow the discharge pressure to rise to 445-480 psig and hold it constant.

5. Slowly meter liquid refrigerant through the suction side while watching the pressure gauges and monitoring superheat and sub-cooling temperatures.

 CAUTION
 Add liquid refrigerant slowly to prevent the refrigerant oil from “washing out” of the compressor.

6. Take a superheat temperature reading near the feeler bulb from the auxiliary control module with the temperature measuring device being well insulated. The ideal superheat temperature is 12-15°F. Maximum allowable superheat temperature is 20°F.

 CAUTION
 Do not exceed 20°F superheat. Exceeding this temperature may cause failure of the compressor.

7. While monitoring the pressure, take a sub-cooling temperature reading on the output side of the condenser. The sub-cooling temperature should be 10-20°F.

8. If necessary, (slowly) add liquid refrigerant to the suction side to achieve the correct sub-cooling temperature.

 CAUTION
 Remove the blockage from the air intake of the condenser.

9. Fill out the applicable sections of the Warranty Registration and Start-Up Checklist.

2.10.2.4 -30°F Ambient Applications

 NOTE
 For units designed for -30°F operation, a receiver is used to store the refrigerant during the time the condenser is not utilizing the extra refrigerant charge.

1. Follow steps 1 - 8 in Section 2.10.2.3. Once superheat and sub-cooling temperatures are stabilized, additional refrigerant must be added to the receiver.

 NOTE
 It is important not to exceed 80% of the total condenser and receiver volume to allow room for expansion.

2. A refrigerant level sight glass is located on the side of the receiver to assist the service technician in charging the air conditioning system. The proper charge can be determined by viewing the level of refrigerant in the receiver while the unit is running at an elevated discharge pressure.

3. Keep the air intake to the condenser blocked and maintain the discharge pressure at 445 psig and hold it constant. The condenser fan nearest the condenser header should be operating continuously. All other fans, if additional fans exist, should be off during this time.

4. Add additional refrigerant charge to the receiver as needed until the refrigerant level rises to the center of the sight glass, indicating the receiver is 80% filled.

 When the refrigerant in the receiver reaches the sight glass, the unit is fully charged.

 CAUTION
 Remove the blockage to the air intake of the condenser.

5. Fill out the applicable sections of the Warranty Registration and Start-Up Checklist.
2.10.3 Refrigerant Characteristics

2.10.3.1 Pressure/Temperature Settings

The following table is provided to assist with the normal settings of the system for R410A refrigerant. Where applicable, minimum and maximum settings are given along with normal operating pressures.

<table>
<thead>
<tr>
<th>R410A Refrigerant Pressure/Temperature Settings</th>
<th>Normal</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-cooling °F</td>
<td>10</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Superheat °F</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Design Condensing Temp. @ 95°F Ambient</td>
<td>125</td>
<td>105</td>
<td>140</td>
</tr>
<tr>
<td>Suction Pressure (psig)</td>
<td>130</td>
<td>105</td>
<td>155</td>
</tr>
<tr>
<td>Fan Cycling Control- Fan On (psig)</td>
<td>440</td>
<td>330</td>
<td>480</td>
</tr>
<tr>
<td>Fan Speed Control (psig)</td>
<td>440</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2.10.3.2 Saturated Refrigerant Pressure

The following refrigerant temperature/pressure table is provided for reference for R410A refrigerant.

<table>
<thead>
<tr>
<th>Temp. (°F)</th>
<th>Pressure (psig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>78.4</td>
</tr>
<tr>
<td>22</td>
<td>81.9</td>
</tr>
<tr>
<td>24</td>
<td>85.5</td>
</tr>
<tr>
<td>26</td>
<td>89.2</td>
</tr>
<tr>
<td>28</td>
<td>93.1</td>
</tr>
<tr>
<td>30</td>
<td>97.0</td>
</tr>
<tr>
<td>32</td>
<td>101</td>
</tr>
<tr>
<td>34</td>
<td>105</td>
</tr>
<tr>
<td>36</td>
<td>109</td>
</tr>
<tr>
<td>38</td>
<td>114</td>
</tr>
<tr>
<td>40</td>
<td>118</td>
</tr>
<tr>
<td>42</td>
<td>123</td>
</tr>
<tr>
<td>44</td>
<td>128</td>
</tr>
<tr>
<td>46</td>
<td>133</td>
</tr>
<tr>
<td>48</td>
<td>137</td>
</tr>
<tr>
<td>50</td>
<td>143</td>
</tr>
<tr>
<td>55</td>
<td>155</td>
</tr>
<tr>
<td>60</td>
<td>170</td>
</tr>
<tr>
<td>65</td>
<td>185</td>
</tr>
<tr>
<td>70</td>
<td>201</td>
</tr>
</tbody>
</table>

2.11 Settings and Adjustments

2.11.1 Water-Water/Glycol Circuit

Condensing temperature is maintained by liquid flowing through a regulating valve and then into the condenser. The regulating valve opens to increase the liquid flow as the refrigerant pressure rises (or closes as the refrigerant pressure falls). The system controller monitors a signal from a pressure transducer to determine how far to open the valve. The controller automatically changes the control valve position to maintain head pressure based on the difference between the setpoint value and the actual measured value. The controller transmits a proportional 0 to 10 VDC signal to the regulating valve with 10 VDC corresponding to the valve opening 100%.

The system controller is factory set for the correct condensing pressure however, it can be adjusted to increase or decrease the pressure. Adjustment is made by entering the Factory menu in the E² controller. Contact STULZ Product Support for a password to enter the Factory menu and for technical assistance if adjustment is necessary.

Adjustments should be made in small increments. Adequate time must be allowed between adjustments for the valve to fully respond to the control signal and for the changes in system operation to be observed.

2.11.2 Low/High Pressure Limit Switch

Air conditioning systems utilizing DX refrigerant are equipped with hermetically sealed high-pressure and low-pressure switches. These switches are pre-set by the manufacturer and cannot be adjusted. The high-pressure switch opens at 630 psig and has a manual reset. The low-pressure switch opens at 65 psig (± 10) and closes at 105 psig (± 10) and has an automatic reset.

2.11.3 Thermal Expansion Valve

An electronically controlled expansion valve (EEV) maintains constant superheat of the refrigerant vapor at the outlet of the evaporator by metering the flow of refrigerant into the evaporator. Superheat is the difference between the refrigerant vapor temperature and its saturation temperature at a given suction pressure. By controlling superheat, the EEV keeps nearly the entire evaporator surface active while preventing liquid refrigerant from returning to the
compressor. As a standard, superheat is factory set at 12-15°F and should not need adjustment. The superheat temperature is monitored and controlled by the auxiliary control module (EVD Driver) mounted on the door of the electric box. It is recommended that STULZ Product Support be contacted if adjustment is required.

CAUTION

Do not exceed 20°F superheat. Exceeding this temperature may cause failure of the compressor.

2.11.4 Hot Gas Bypass

A electronic hot gas bypass system is provided for freeze protection and capacity control. The auxiliary control module (EVD Driver) mounted on the door of the electric box manages operation of the hot gas valve. The hot gas regulator valve allows refrigerant to flow from the discharge line directly to the evaporator through an auxiliary connection downstream of the thermal expansion valve. This is used to maintain the evaporator at a minimum constant pressure as the heating load varies.

The hot gas (discharge) regulating valve is set to prevent the surface temperature of the evaporator coil from dropping below 35°F. The bypass temperature is factory set and no adjustment should be necessary. It is recommended that STULZ Product Support be contacted if adjustment is required.

2.11.5 EC Fans

The speed of the EC fans are controlled via a 0 to 10 VDC signal from the system controller. The controller is pre-set by the factory for the correct fan speed configuration and should not require adjustment. If it is determined that the air flow needs adjustment, this may be done using the controller’s programming menu selections. Refer to Section 4.4.4 for instructions on adjusting airflow using the system controller. It is recommended that STULZ Product Support be contacted when initially making adjustments to the controller.
3.0 START-UP/COMMISSIONING

3.1 Initial Operation

For new installations, ensure the unit is ready to operate by going through the Checklist for Completed Installation, located in Appendix A, prior to start-up.

NOTE
A Warranty Registration and Start-Up Checklist is provided in the unit data package. It should be completed during start-up and sent to STULZ. This checklist should be used as a guideline for items that need to be confirmed during start-up.

Start-up must be performed by a journeyman, refrigeration mechanic or an air conditioning technician.

3.2 Step by Step Start-Up Instructions

1. Replace all equipment removed prior to performing the start-up checks.

2. Turn the system on with the service disconnect switch. Upon applying power to the controller it begins an initialization sequence, conducting internal diagnostics to confirm functionality (see Section 4.3).

3. After about 30 seconds the Main screen is displayed (see Figure 9). At the bottom of the screen a status message “Unit On” appears.

4. After “Unit On” appears, the fans begin operating in 5 second, time delayed stages (adjustable). The middle fan is turned on 1st, then the upper fan, then the lower fan. The STULZ logo in the display is replaced with a blower symbol.

5. A 45 second time delay is allowed after the first fan turns on before the controller polls the air proving switch. If adequate air flow is detected, the controller enables its outputs. If the actual room conditions are not within the range of the programmed setpoints, the system will begin operating in the mode(s) needed (cooling, dehumidifying) to reach the setpoints. Symbols appear in the display to indicate the active operating modes (see Section 4.3).

6. Temperature and humidity alarms are masked out for 30 minutes to allow for conditions to stabilize without triggering nuisance alarms.

7. Ensure that all fans are rotating correctly and freely without any unusual noise.

8. Test cooling operation by decreasing the temperature setpoint (see Section 4.5.4.1) to create a demand for cooling. The compressor will turn on and the supply air should feel cooler than the return air.

In all cases, 1 to 6 hours might be required to see the desired temperature and humidity level in the conditioned space. Once room conditions have been programmed or set, a repeat visit to the conditioned space may be required to ensure the system is meeting the room’s requirements.

3.3 Microprocessor Controller Programming

The E^2 microprocessor controller is factory programmed based on the features selected with the system. A user provided BMS may be used to directly interface to the E^2 controller. The operator may view all the available menu screens through a BMS, however, changes may be made only to basic parameters such as adjusting setpoints and setting and acknowledging alarms. More advanced parameter adjustments may be made through the user interface display (see Figure 10). Operating instructions for the E^2 controller are provided in Section 4.0.
4.0 \(E^2 \) CONTROLLER

4.1 General
The advanced microprocessor based, \(E^2 \) Series controller is a highly versatile and flexible A/C system controller. It is designed primarily for STULZ Precision Air Conditioners. The controller is equipped with flexible software capable of meeting the specific needs of the application. The controller is completely programmed at the factory and therefore, most applications will require no field set up. However, the default setpoints and their ranges are easily viewed and adjusted from the user interface display. The program and operating parameters are permanently stored on FLASH-MEMORY in case of power failure.

The \(E^2 \) Series controller is designed to manage temperature and humidity levels to user defined setpoints via control output signals to the A/C system. Control parameters have variable outputs from 0 to 100% of the full rated capacity. The controller continually receives inputs for the measurable control conditions (temperature and relative humidity) via sensors installed in the cabinet. The internal logic determines if the conditions require cooling or dehumidification. Control setpoints are established to maintain the room’s designed conditions. The controller responds accordingly to changes and controls the output(s) to the air conditioning system so temperature/humidity conditions reach the user defined control setpoints.

4.1.1 Features

4.1.1.1 Field Confi gurable
The program for the \(E^2 \) Series controller is field configurable, allowing the operator the capability of selecting control parameters and setpoints specific to the application. Operator interface for the \(E^2 \) controller is provided via an attractive, door mounted user interface display panel. The display panel has a backlit LCD graphical display and function keys giving the user complete control and monitoring capability of the precision cooling system. The menu driven interface provides users the ability to scroll through and enter various menu loops. Monitoring of room conditions and A/C system operation is allowed without entering a password. Modifications to the control setpoints require the use of a password.

4.1.1.2 Password Protection
Access to the Info menu and Alarms log is allowed without the use of a password. The controller is programmed to recognize predetermined security levels before allowing access to display screens containing critical variables. Three secured menu levels (Control, Service and Factory) support unique passwords that must be entered to access the menu screens so only authorized personnel may perform modifications to the settings.

4.1.1.3 Restorable Setpoint Parameters
Upon initial start-up the A/C system operates using the setpoints programmed by the factory. The customer may enter new operating parameters in the Control and Service menus and the system will then operate accordingly. The new setpoints may be stored as Customer Default setpoints. The primary setpoints entered by the factory still remain stored in the controllers’ memory as Factory setpoints.

The setpoints for the system may be re-adjusted in the Control menu at any time. If it becomes necessary, the customer may restore the setpoints back to the Customer Default setpoint values or to the original Factory (primary) setpoint values in the Service menu (See Section 4.5.5.9).
4.1.1.5 A/C Grouping pLAN Operation

Multiple A/C system controllers can be connected (grouped) to a pLAN local network, allowing the communication of data and information from each controller to a central control terminal or Lead controller. The Lead controller display screens can be used to monitor and adjust group control variables for the individual system controllers. Each E^2 controller connected to the pLAN network is to be identified with its own unique address.

Multiple A/C units consisting of up to eight (8) STULZ precision air conditioners equipped with like controllers may be controlled and monitored via the E^2 series controller. With multiple A/C units each unit can selectively be configured as "Active" to operate as a primary A/C, "Capacity Assist" for staged operation or as "Standby" to come online in case of a failed air conditioning unit to ensure continuous availability. The controller may also be configured to rotate units with timed duty cycling to promote equal run-time and assure that each A/C unit within the rotating group is operationally exercised on a periodic timed basis.

4.1.2 User Interface Display Panel

Your unit is equipped with an interface display panel typically mounted on the front panel of the A/C unit.

The user interface display panel features an easy to read, backlit liquid-crystal alphanumeric display equipped with LED illuminated function keys. The screens that appear on the user interface display panel present data that originates from the controller I/O module (Figure 10). The controller is operated via a 6-key menu-driven loop structure and offers an alarm log plus four different interface menu levels to the operator; Information, Control, Service, and Factory. These menus permit the user to easily view, control and configure operating parameters for the A/C unit. (See Menu Selections, Figure 13.)

4.1.2.1 Function Keys

<table>
<thead>
<tr>
<th>KEY</th>
<th>FUNCTION</th>
</tr>
</thead>
</table>
| ¥ | Accesses the active alarm screen(s)
| | Silences audible alarms
| | Resets active alarms in the alarm menu |
| Prg | Accesses the main menu
| | Illuminates yellow when unit is on |
| Esc | Returns to the previous menu level
| | Cancels a changed entry |
| ↑ | Steps to the next screen in the display menu
| | Increases the value of a modifiable numeric field |
| ↓ | Starts/Stops system operation
| | Accepts current value of a modifiable field
| | Advances the cursor to the next active alarm screen
| ↓ | Steps back to the previous screen in display menu
| | Decreases the value of a modifiable numeric field |

4.1.2.2 Contrast Adjustment

Press and hold the (¥) and (Prg) keys; then use the Up (↑) and Down (↓) keys to adjust the contrast.

4.1.2.3 Alarms

Alarm conditions activate a red LED indicator that backlights the alarm function key. As an option, an alarm condition may also be enunciated by an audible alarm signal. An alarm is acknowledged by pressing the alarm key. This calls up alarm display screen(s) that provide a text message detailing the alarm condition(s). After an alarm condition is corrected, the alarm can be cleared by pressing the alarm key.
4.1.3 Controller I/O Module

The controller is a microprocessor based I/O module mounted inside the A/C system electric box (see Figure 11). The controller I/O module contains the software that manages the operating parameters of the A/C system.

4.1.3.1 Controller I/O Module Layout

The controller I/O module contains the logic and input/output terminals. See Figure 11 for details of the controller I/O module layout. The item numbers that follow coincide with the call-outs in Figure 11.

1. Connection (J10) for interface display panel
2. Connection for pLAN (J11)
3. Hatch for BMS or network card
4. Power on LED (Yellow)
5. Signal LEDs (Red, Yellow, Green)
6. Hatch for expansion I/O module(s)
7. Power connector (J1)

4.1.4 BMS Interface

The E^2 series controller may incorporate a BMS network card equipped with a communication port (Figure 12). This can be field connected through a serial interface to a Building Management System via Modbus, BACnet, SNMP or HTTP protocol as configured by the factory. A controller interfaced to a network must be configured for BMS communication.

![Controller I/O Module Layout](image)

Figure 11- Controller I/O Module

![BMS Interface Ports](image)

Figure 12- BMS Interface Ports
4.2 Navigating Controller Display Screens

4.2.1 Menu Selection

The E^2 Series controller provides five user selectable menus needed to view operating data and enter setpoints for the system (see Figure 13). These menus may be accessed from a scrolling Main Menu screen by pressing the Program (Prg) key. You are then allowed to scroll between adjacent menu selections within the Main Menu by use of the Up (↑) and Down (↓) arrow keys.

When the desired menu is centered in the screen with bold capital letters and an arrow (◇) symbol pointing towards the Enter (➡) key, you may press the Enter (➡) key to access that menu loop. The user can access the menu loop screens located within the designated menu selection using the Up (↑) and Down (↓) arrow keys. Access to some menus may be protected by a built in security protocol and may require the use of a password to gain access.

4.2.2 Menus

From the Main screen you may press the Program (Prg) key to select from among the five menus shown in Figure 13.
4.2.3 Display Variables
The user interface display panel provides screens with three (3) different forms of both the read only and the modifiable variables:

- **Numbers** are displayed as positive (+) or negative (-) integers.
- **Dual-State** can be toggled between two (2) values i.e. On/Off, Yes/No.
- **Word Variables** have a unique text message for each of the variable’s possible choices.

4.2.4 Cursor Position in Screens
The following display screen is shown as an example after accessing a new menu loop display screen using the function keys. The name of the menu loop is the line in the upper-most field of the screen. A flashing window also appears in the left of the uppermost field indicating you’re in the top level of that menu loop.

From this position the Up (↑) and Down (↓) arrow keys may be used to access additional selections within the current display menu.

Each screen supports a specific functional requirement. Pressing the Enter (↵) key allows you access to the selected display screens to adjust any of the modifiable fields. If a screen with modifiable values is accessed, you may use the Enter key to insert a flashing cursor in the modifiable fields within that screen.

If the flashing cursor is located in a modifiable field, the value of the field will be changed with the use of the Up (↑) and Down (↓) arrow keys. When the Enter (↵) key is pressed the cursor moves to the next modifiable field. After entering the last modifiable field within a screen, pressing the Enter key removes the cursor and the flashing window reappears in the left-hand corner of the upper-most field of the current screen. From here advancement to the next adjacent menu loop screen will occur when the Up or Down key is pressed. Successive use of the Enter key will advance the cursor through the various modifiable fields of the display screen eventually returning to the first field.

Values that are already correct may simply be skipped over by using the Enter (↵) key without modification of the variable. The current value, if not changed, will be retained after pressing the Enter (↵) key. Values for fields being adjusted will automatically wrap when adjusted beyond the high or low limit established for that field.

Whenever the flashing cursor is located in a modifiable field, pressing the Escape (Esc) key one time returns the user to the next menu up. Each successive use of the Escape key returns you to the next menu level up until the Main screen is reached.

4.2.5 Modifiable Variables

<table>
<thead>
<tr>
<th>SET CLOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time: 00:00</td>
</tr>
<tr>
<td>Date: 00/00/0000</td>
</tr>
<tr>
<td>Day: XXXXXX</td>
</tr>
</tbody>
</table>

For the purpose of this manual the examples of user modifiable variables within display screens will be denoted by **bold text**. (Please note the actual display may not use bold text.) Pressing the Enter (↵) key accepts the value displayed and advances the cursor to the next modifiable field. The Up (↑) or Down (↓) key may be used to modify the values of these fields.

If the modifiable field is a positive (+) number, the positive value is indicated by the absence of a (+) or (-) symbol. The (-) negative symbol will be displayed to the left of the first digit for negative numbers.

4.2.6 Password Authorization Levels
Access to a menu loop may be requested from the main menu. Modifiable control screens have variables that affect system performance. **Improper settings may result in erratic operation and possible system failure or damage.** Anyone is allowed direct access to the **Info** and **Alarm log** display menus with no security password.

Only authorized personnel who possess a thorough understanding of the system operation should perform modifications to secured menu settings (Control, Service and Factory). These menus are configured with password protection, thus requiring a higher level of authority to access them. The screens must have accurate variables entered otherwise erratic operation may occur.
4.2.6.1 Password Protected Screens

Upon first attempting to select a secure menu in a given session, the "Enter Password" screen will be displayed. This screen displays the current security level authorized.

Enter Password Screen

A session is defined as from the time access is gained to a secure menu until 60 seconds elapses with no key activity. Security access will be terminated at this point and the password will have to be re-entered to gain access. The menus that may be password protected by the user are the Control and Service menus. The Factory level menu screens are also password protected, however the password is set at the factory to limit access. It is intended that access to the Factory menu screens only be granted while the user is working with the guidance of STULZ Product Support (see Section 6.0) because incorrect settings made at that level could unintentionally damage the equipment. The Access ID Code in the bottom left of the "Enter Password" screen is needed when contacting Product Support to determine the correct Factory menu password for your specific controller.

The level of authority is established by entering the proper password for a given security level. The controller is shipped from the factory with preset passwords for all of the security levels.

Operators who are allowed access to the Service menu (level 2) for example, must know the password to enter that level. If the entered password equals or exceeds the level requested during a given session, the operator is allowed to access the requested loop. For example, if the entered password allows access to level 2 and the Control menu (level 1) is requested, access will be allowed. If the entered password authority level is lower than the level requested, the words "WRONG PASSWORD" will appear for several seconds at the bottom of the screen.

4.2.6.2 Wrong Password

The "WRONG PASSWORD" message is displayed any time an incorrect password has been entered and the Enter (➡) key has been pressed. If the "Wrong Password" message appears, pressing the Enter (➡) key will return the operator to the "Enter Password" field.

A requested menu screen is displayed any time a valid password has been entered and the Enter (➡) key is pressed.

NOTE

If you request the Control menu and enter the Service menu password, you are granted access to both.

4.2.6.3 Setting the Passwords

The initial passwords are set by the factory to 0001 for the Control menu (Level 1) and to 0002 for the Service menu (Level 2). Upon entering the Service>Save Cfg menu, the operator is allowed to change the passwords for the menus. If changed, from that point on access may only be gained to that menu by personnel who know the password.

4.3 System Operation

CAUTION

Ensure all system hookups to the air conditioner(s) are completed and that power is available.

1. Turn the main power disconnect switch for the A/C unit to "On". Upon applying control power, the controller display function keys illuminate and the controller begins conducting internal diagnostics to confirm functionality. The controller monitors the alarm inputs and alarm logic to determine if it's safe to start the unit. After an initialization period of about 30 seconds the Main screen is displayed.

The Main Screen is a status screen displaying the current date and time. It displays the current control temperature and relative humidity and the current temperature and dew point as calculated from the T/H sensor. It also displays the current system operating mode(s).

2. If the controller is configured for Automatic On operation (standard), a status message "Unit On" then appears in the display.
3. If the status message "OFF-Manual Restart Req" appears instead of "Unit On", the Automatic On feature may not be enabled. In this case turn the air conditioner on by pressing the Enter (↵) key.

NOTE
You may turn the A/C unit on and off at anytime by pressing and holding the Enter (↵) key for 3 seconds.

Other status messages that may appear at the bottom of the screen are:

"OFF by remote shutdown"- Indicates the Remote Start/Stop feature is enabled and requires a remote start switch to be turned On.

"OFF by Network"- Indicates the unit is part of a group and is off due to a grouping priority command such as a compressor alarm or loss of airflow or, the BMS communication feature is enabled and the unit received a network signal to pause operation.

"OFF by Internal Alarm"- Unit is off due to a group alarm condition. (Only active with grouped units.)

"Unit on CL Lockout"- This indicates cooling has been locked out while there is a demand for dehumidification because the temperature is below the minimum temperature allowable for dehumidification (factory default setting is 4°F below setpoint).

4. After the initialization period expires, the controller enables the control output to the fluid control valve (CRS-W & CRS-G units) and the fans are allowed to begin operating.

5. The STULZ logo in the display is replaced with a blower symbol. The fans begin operating in stages with five second time delays. The middle fan starts first, then the upper fan, then the lower fan.

6. Following a 45 second time delay (after the first fan turns on) the controller polls the air proving switch. If adequate airflow is detected, the controller enables the compressor to turn on if there is a demand for cooling or dehumidification as defined by the control setpoints.

7. The controller records the date and time power is re-initialized in the alarm history log.

8. If the actual room conditions are not within the range of the programmed setpoints, the system will begin operating in the mode(s) needed to reach the setpoints (cooling or dehumidifying). Symbols (shown below) appear in the display to indicate the active operating modes.

- = Blower On
- = Call For Cooling
- = Dehumidifying

9. Temperature and humidity alarms are masked out for 30 minutes to allow for conditions to stabilize without triggering nuisance alarms.

10. Operator interface to the menu loops is available from the Main screen by pressing the Program (Prg) key. The controller starts a timer whenever a key sequence is initiated. Every time a button is pressed, the timer is reset. If there is no key activity for 60 seconds, the controller will return to the Main screen unless the Screen Lock feature is enabled in the Information menu loop (see page 4-16).
4.3.1 Setpoint Adjustment

1. From the Main screen, access the Main Menu screen by pressing the program (Prg) key.
2. Scroll through the Main Menu selections with the Up (↑) and Down (↓) arrow keys and select the Control menu by pressing the Enter (➡) key when "CONTROL ☐" appears in bold letters in the center of the screen. A password entry screen will be displayed.
3. To access the Control menu, press the Enter (➡) key twice to insert a flashing cursor in the "Enter Password" field.

 Reset? No
 Enter Password: ☐ 0
 JD 0 Level:0

 (Flashing Cursor)

 Change the "0" to "1" (or to the current Control menu password if it was changed in the Service menu) with the Up (↑) arrow key and then press the Enter (➡) key to accept the password. Press the Enter (➡) key again to access the Control menu screens.
4. From the Control menu, select Setpoints by scrolling through the menu selections with the Up (↑) and Down (↓) arrow keys until the word "Temperature" appears in the field at the top of the screen.
5. After entering the Setpoints screens, select the Temperature setpoint screen by scrolling through the menu selections with the Up (↑) and Down (↓) arrow keys until the word "Temperature" appears in the field at the top of the screen.

 Temperature
 Setpoint 72.0°F
 Controlling to Avg supply air temp
 STATUS---------------------
 Temp: 73.0°F Set:72.0°F
 Dew: 50.3°F

 Pressing the Enter (➡) key places the flashing cursor in the setpoint value field. Increase or decrease the Temperature Setpoint with the Up (↑) and Down (↓) arrow keys until the desired temperature value is shown. Press the Enter (➡) key again to accept the setpoint (this removes the cursor from the field).
6. From the Temperature setpoint screen, select the Humidity Setpoint screen by scrolling with the Up (↑) or Down (↓) arrow key. When the word "Humidity" appears in the field at the top of the screen, press the Enter (➡) key to move the cursor into the setpoint value field.

 Humidity
 Setpoint 45.0%
 STATUS---------------------
 Hum: 45.7% Set:45.0%
 Dew: 51.9°F

 Increase or decrease the Humidity Setpoint with the Up (↑) and Down (↓) arrow keys until the desired humidity value is shown. Press the Enter (➡) key again to accept the setpoint and then press the Escape (Esc) key to return to the Setpoints (SET) Control menu screen.
7. Press the Escape (Esc) key twice to exit the Control>Setpoints screens and return to the Main Menu screen.
8. Observe the indicator symbols in the Main screen to determine if the unit is operating in the required mode(s).
9. One to six hours may be required to see the desired temperature/humidity level in the conditioned space. Once room conditions have been programmed or set, a repeat visit to the conditioned site may be required to ensure the air conditioner is meeting the room’s requirements.

4.3.1.1 Saving and Restoring Setpoint Parameters

Upon initial start-up the A/C system operates using the setpoints programmed by the factory (primary setpoints) as the operating setpoints. As described in Section 4.3.1, the customer may enter new operating parameters in the Control menu anytime and the system will then operate accordingly. The customer may store the new setpoints in the Service menu if it is intended to save them. Once stored, the Customer setpoints now become the operating setpoints. The primary setpoints entered by the factory still remain stored in the controllers’ memory as the Factory setpoints.

At any time, setpoints for the system may be re-adjusted to any value and the system will operate accordingly. If it becomes necessary however, the customer may enter the Service menu and restore the setpoints to the stored Customer operating setpoint values. The original Factory (primary) setpoint values may also be restored from the Service menu. Whichever setpoints are restored (Factory or Customer), become the current operating setpoints.
4.3.2 Alarms
As programmed into the system controller, an alarm condition activates the summary alarm logic which illuminates the alarm key and energizes an audible alarm. Some alarms are programmed by the factory to automatically shut down the A/C unit until the alarm condition is remedied and the alarm is cleared by pressing the alarm key. Some of the alarms that may be enabled by the factory are listed in Section 4.5.3.

4.3.2.1 Summary Alarm
A summary alarm will activate when the controller senses any programmed alarm condition. This illuminates the alarm key and if the option is selected, a N.O./N.C. summary alarm contact may be energized for remote monitoring of alarm conditions. If certain critical summary alarm conditions are detected, they will cause the A/C unit to shutdown.

4.3.2.2 Customer Alarms
A customer provided digital (on/off switching) alarm sensor may be connected to terminals provided in the electric box. This alarm input may be for any site specific alarm condition the user wishes to monitor that may or may not be provided in the standard controller alarms menu; i.e. Gas Detection, Intrusion Alarm, etc. Upon detection of a customer alarm, the controller will activate the summary alarm contact and display a screen message indicating a customer alarm message. The screen message "Customer Alarm 1" (default) will appear in the controller display or the user may reconfigure the controller to display any alpha-numeric message desired, up to 20 characters long, in the Service>Options>Custom menu loop (see Section 4.5.5.5.5).

4.3.2.3 Custom Alarms
A custom (user configured) alarm is activated upon detection of one or more programmed alarm conditions as set by the operator in the Service>Options>Custom menu loop (see Section 4.5.5.5.6). When a custom alarm condition is detected, a summary alarm is signaled and a designated set of N.O. & N.C. Custom Alarm relay contacts may be energized to provide remote indication of the specific alarm condition(s).

For example you may want to be notified when a change filter alarm is annunciated, giving notice that the air filters need to be cleaned or replaced. That way you are alerted before the filters are so badly clogged that airflow is reduced to a point where a "Loss of airflow" alarm is activated.
4.4 Controller Operation

The E^2 Series controller is designed to control an air conditioning system in a space or process application to temperature and humidity levels as defined by the user. Conditioned air is supplied to the space as needed to maintain the temperature/humidity control setpoints.

The controller I/O module includes inputs and outputs as depicted in Figure 14. Not all the inputs and outputs shown below are utilized, therefore, only the inputs/outputs needed for the specific A/C system type and application are enabled.

![Figure 14- Control Inputs and Outputs](image-url)
The E^2 controller continually analyzes the demand for cooling, humidifying and dehumidifying against the control setpoints and determines the appropriate response (control output signals) to operate the A/C system. The controller is equipped with analog input positions for monitoring temperature and humidity sensor(s). The controller monitors the actual cold aisle supply air conditions for three fan zones (upper, middle and lower) as measured by temperature sensors mounted locally to each zone inside the CyberRow cabinet. The controller also monitors a temperature/humidity (T/H) sensor which is mounted in the return (hot aisle) side of the cabinet.

A remote mounted supply air T/H sensor may also be provided as an option. The controller may be configured by the factory to manage system operation based on the remote T/H sensor inputs which is to be field installed in the supply (cold aisle) space.

4.4.1 Control Signals

Control output signals and alarm recognition takes place by means of the controller analyzing signal inputs from the sensor(s) and developing the appropriate digital or proportional response.

4.4.1.1 On/Off Digital Control

Based on control inputs, the controller provides an on/off output signal to activate certain modes of operation for the air conditioner (i.e. humidifier, fans, or annunciate an operating condition status i.e. alarm condition).

4.4.1.2 Proportional/Integral (P/I) Control

The controller calculates proportional control output signal(s) based on the analysis of input signals which then determines the air conditioner's required mode(s) of operation. Signals representing temperature and humidity are each compared by the controller as a percentage value to the maximum control setpoint value resulting in control output values that are directly proportional to the input signal.

The integral value is used to gradually adjust the proportional output when the calculated output does not move the process variable closer to setpoint in a given period of time. Decreasing the integral value decreases the interval for the output corrections (speeding the rate of adjustment). Increasing the integral value increases the interval for corrections (slowing the rate of adjustment).

4.4.2 Control Methods

System operation depends on the controller's programmed operating configuration. Control takes place by means of the controller analyzing signal inputs from the supply air temperature sensors and the return air T/H sensor or optional remote mounted supply T/H sensor. The E^2 controller may be configured for temperature/relative humidity control (standard) or dewpoint control (optional) for cooling, dehumidification and humidification functions.

The control method, selected in the Factory menu, determines which sensors the controller uses to manage operation of the A/C system. You may view the method selected in the Control>Set menu, see Section 4.5.4.1.

<table>
<thead>
<tr>
<th>Control Method</th>
<th>Control Sensor Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature control</td>
<td>1. Supply air sensors</td>
</tr>
<tr>
<td></td>
<td>2. Return T/H sensor</td>
</tr>
<tr>
<td></td>
<td>3. Remote Supply T/H sensor</td>
</tr>
<tr>
<td>Humidity control</td>
<td>1. Return T/H sensor</td>
</tr>
<tr>
<td></td>
<td>2. Remote Supply T/H sensor</td>
</tr>
<tr>
<td>Dewpoint control</td>
<td>1. Return T/H sensor</td>
</tr>
<tr>
<td></td>
<td>2. Remote Supply T/H sensor</td>
</tr>
</tbody>
</table>

4.4.2.1 Temperature/RH Control

When enabled for temperature/RH control, the controller continuously monitors the selected combination of air temperature sensors and return T/H sensor or optional remote supply T/H sensor, as configured by the factory, to manage system operation.

4.4.2.2 Dewpoint Control

When enabled for dewpoint control, the controller logically examines the combination of temperature and relative humidity (dewpoint) and determines the proper control of cooling, humidification and dehumidification to move the actual conditions to within the boundaries of the dewpoint setpoints as they would appear on a psychrometric chart (see Figure 15). It avoids scenarios where the A/C unit might both cool and humidify the supply air when cooling alone will achieve the desired result.

The controller calculates dewpoint using the control inputs from the return air T/H sensor or optional remote mounted supply T/H sensor as configured by the factory. The calculated dewpoint property is used to manage system operation which results in higher operational efficiency and shorter component run-times.
4.4.3 Operating Configurations

The operating configuration for the controller depends on what type of air conditioner is being controlled (i.e. AR, CW, W/G) and what features are selected. The operating configuration is preset by the factory according to the application. If certain features discussed in this manual are not factory enabled, no screens for that feature will appear in the controller user interface display.

4.4.3.1 Compressor Operation

The controller cycles the compressor on when it is determined that cooling is called for. The compressor is turned on based upon the controller’s cooling response to temperature and humidity inputs from the air sensors. The compressor is enabled following a time delay, once the programmed “Cooling Stage Enable” setpoint value has been reached (see Figure 16). The compressor runs at a constant speed and an electronic hot gas bypass system manages capacity in accordance with the demand for cooling. The compressor is turned off when the control cut-out setpoint is achieved, provided the minimum run time is expired. Operating setpoints for the compressor are programmed by the Factory and no adjustment should be necessary. It is recommended that STULZ Technical Support be contacted if adjustment is required.

4.4.3.2 Water-W/G Operation

When the system is turned on the controller activates the fluid supply control valve with a proportional/integral (P/I), 0-10 VDC signal. The valve opens proportionally based on head pressure. The control parameters are adjustable in the Factory menu. Contact STULZ Technical Support for guidance if adjustment is needed.

The control valve changes position to adjust coolant flow to keep the head pressure to the control setpoint and maintain it. If the head pressure rises, the valve position continues to modulate open as needed, up to 100% (fully open), to maintain the control setpoint.

![Psychrometric Chart](image)

Figure 15- Dewpoint Control

![Compressor On/Off Cycle](image)

Figure 16- Compressor On/Off Cycle
The control output signal is matched to the valve. If the valve typically opens at 2.5 VDC, the control I/O module will generate the appropriate voltage for opening the valve starting at the minimum voltage of 2.5 VDC. From there the signal increases as needed until the valve position reaches 100% open.

4.4.3.3 Dehumidifying
When dehumidification is called for the blower speed automatically changes to the dehumidification fan speed setting. The controller will operate the system in the cooling mode at full output to strip moisture from the air. The system will remain in the cooling mode until the actual relative humidity (or dewpoint) reaches the control temperature setpoint plus the dehumidification cut-out offset. If the control temperature drops below the low temperature cut-setpoint minus 4°F default), cooling operations will be stopped.

4.4.4 Air Flow/Fan Speed Control
The E² controller treats each EC fan as a variable speed fan. The controller manages the speed of each fan from a factory-set minimum up to a factory-set maximum speed. The minimum fan speed is used whenever the A/C unit has no cooling operations running. The maximum fan speed setting is used during times when the A/C unit is cooling. A dehumidification fan speed setting is used when the system is in the dehumidification mode. The speed settings are adjustable in the Service>Blower>Blower Set Up menu loop (see Section 4.5.5.4.2).

EC fan speed is automatically varied based on temperature. There are mechanisms to trade-off the control valve opening versus fan speed. When the system enters the dehumidification mode, the fan speed automatically changes to the dehumidification speed setting.

The E² controller’s software is equipped with an operational fail-safe mode. Upon sensing a temperature sensor failure, the controller signals an alarm. It continues to develop the fan control outputs by calculating the averaged value of the remaining sensors to replace the input value of the failed sensor. If all the temperature sensors fail, the controller develops the control outputs based on the entered temperature setpoint value minus a 3°F temperature offset. This allows the CyberRow system to continue operating while the cause of the problem is corrected.

The controller continually monitors fan operation. CyberRow CRS-042 and CRS-084 units are equipped with a pneumatic air proving system connected to a flow switch that detects the loss of airflow when a fan fails to operate. If one of the fans fails to operate, the controller alerts the operator with an alarm message and increases the speed of the remaining two fans to 99.9% to compensate for the loss of air flow. If the fault does not clear, the fans shut down for 5 seconds and then restart. If the fault continues, the fans reset a second time. If the fault does not clear after the second reset the fan(s) which generated the fault are shut down and the remaining fans continue operation at 99.9% speed.

In the event of a BMS monitoring/control signal failure, the E² controller will default to local operation at the current setpoints for the fans. The local sensors have priority over the BMS system.

4.4.4.1 Independent Fan Speed Control
The system controller may be configured for independent, variable fan speed control for managing upper, middle and lower zone cooling. The controller continually monitors the actual cold aisle supply air conditions for each fan zone (upper, middle and lower) as determined by temperature sensors mounted locally to each zone inside the CyberRow cabinet and it adjusts the speed of each fan to meet the supply air temperature setpoint for that zone. The operator may select from three independent fan speed temperature control methods in the Control> Set>Fan Control menu loop (Section 4.5.4.1). Minimum and maximum fan speed settings for each fan are user adjustable in the Service>Blower>Temp Zone Set Up menu loop (see Section 4.5.5.4.1). The fans will not run at speeds outside of the envelope established in that menu loop.

4.4.4.1.1 Variance From Average Fan Speed Control
When configured for variance from average fan speed control each fan operates independently. The controller manages the speed of each fan by comparing the variance of the fans’ local zone temperature sensor to the overall average temperature measured by the sensors for all three fan zones. The controller adjusts the speed of each fan as necessary to meet the supply air temperature setpoint for that zone.

4.4.4.1.2 Temperature Proportionate Speed Control
The controller adjusts the speed of each fan proportionally for that zone to meet the supply air temperature setpoint. The controller compares the variance of each temperature zone to the temperature setpoint and develops a proportional control output to modulate the speed of each fan to meet the supply air temperature setpoint for that zone.

4.4.4.1.3 Manual Speed Control
The controller continually controls the speed of each fan to values manually entered in the system controller Control>Set>Fan Control menu loop (Section 4.5.4.1) without regard to the temperature setpoint.
4.4.5 Remote On/Off
For Remote On/Off operation, terminal positions are provided to connect a remotely located, On/Off switching control device. If the A/C unit is turned on and the controller receives a remote input signal to turn off the A/C unit, the controller disables all control outputs and a message "Off by Remote Shutdown" appears in the main display screen. The A/C system will automatically be re-enabled when the remote On/Off signal calls for the A/C unit to turn back on.

The control device may be an On/Off switch, thermostat or a humidistat. If customer provided, the remote On/Off control contacts must be sized appropriately. The Remote On/Off contacts must have a minimal rating of 24 VAC. Refer to the electrical drawing included with the A/C unit for the electrical specifications and for wiring details.

4.5 Menu Screens
4.5.1 Main Menu

The Main Menu is accessed from the Main screen by pressing the Prg key. The Main Menu screen provides a complete listing of the menu loops that are available. You may scroll through the menu categories using the Up (↑) and Down (↓) arrow keys. From the Main Menu screen you may select from among the following standard menus:

"Info"- Displays basic read-only status information. Allows you to monitor system operational parameters. No password is needed at this level.

"Alarm Log"- Displays all alarms and "power-ups" in sequential order with a time and date stamp. No password is needed at this level.

"Control"- Allows modification of basic control parameters such as setpoints and clock. Level 1 password is needed to enter this menu.

"Service"- Allows modification of advanced control parameters such as offsets, blower speed, BMS set up and permits the user to save customer parameters and reset the controller to the customer or factory default values. Level 2 password is needed to enter this menu.

"Factory"- Allows modification of more advanced control parameters such as sensor scaling, start-up delays and grouping parameters. Level 3 password is needed to enter this menu. Entry to the Factory menu is intended for qualified technicians working under the guidance of STULZ Product Support during start-up and commissioning of the A/C system. The password to enter this menu may be obtained by contacting Product Support (see section 6.0 of this manual).
4.5.2 Information Menu Loop

The Info menu screens may be accessed from the Main screen by simply scrolling with the Up (↑) and Down (↓) arrow keys. The same screens may also be viewed if you enter the Info menu by pressing the "Prg" key. The Info menu displays screens that provide current temperature and relative humidity conditions and shows the modes the A/C system is currently operating. There are no adjustable parameters in this loop. From the Info loop you may view the following display screens as they apply to the unit configuration:

4.5.2.1 Operating Conditions

The first Info screen displays the current Date, Time and provides State of Operation icons.

The actual control temperature (°F) and relative Humidity (rh) is always displayed and dewpoint (Dp) will appear as derived from the control T/H sensor selection. The values displayed are used by the controller to develop control output signals for managing system operations.

4.5.2.2 Return Temperature Sensor

Displays Relative Humidity as measured by the return temperature/humidity (T/H) sensor inputs. The return T/H sensor is typically factory mounted inside the cabinet. As an option, the return T/H sensor may be removed from the cabinet and remotely mounted in the hot aisle.

4.5.2.3 Return Humidity Sensor

Displays Relative Humidity as measured by the return T/H sensor inputs. Return dewpoint is calculated by the controller based on the return T/H sensor inputs and then shown at the bottom of the display screen.

4.5.2.4 Temperature Sensors

The temperature screens display the supply air temperature as measured by sensors located in the cold aisle side of the CyberRow cabinet. The sensors are located within the cabinet in upper, middle and lower zones as called out in the display. Values measured by the sensors may be used to individually control the speeds of the fans (see Section 4.4.4.1).
(Continued from previous page)

Screen Lock Feature
You may lock any of the status display screens, bypassing the display screen
time-out function. This is sometimes useful to maintain visibility to a specific
screen when testing, making adjustments or troubleshooting the system.
Simultaneously press the program (Prg) and Enter (↑) key for
approximately 3 seconds to turn the screen lock feature On or Off. When a
screen is locked it remains displayed unless you press the Up (↑) or Down (↓)
arrow keys to select a different screen within the menu loop. A symbol (찍)
appears in the upper right corner indicating the screen lock feature is On.

4.5.2.5 Remote Supply Temperature/Humidity Sensor
The remote temperature and humidity screens appear if your unit is
configured for a remote supply T/H sensor. The screens display the supply air
temperature and humidity as measured by the sensor which is to be customer
installed in the cold aisle. Remote dewpoint is calculated by the controller
based on the remote supply T/H sensor inputs and shown at the bottom of the
display screen. Values measured by the sensor may be used to control the
temperature and humidity.

4.5.2.6 Discharge Pressure
The Discharge Pressure status screen only appears if your unit is a water or water/
glycol cooled DX system. It displays the current operating head pressure. Discharge
pressure is managed by the system controller based on the input of the head
pressure transducer.

4.5.2.7 Setpoint Values
Displays the current operating Temperature and Humidity setpoints and control
method. If configured for Dewpoint control, the controller displays the calculated
dewpoint setpoints for dehumidification and humidification as derived from the
operating temperature and humidity setpoints.

4.5.2.8 Compressor Status
Displays the status icon (On or Off) for the system compressor and shows the
status of the High Pressure and Low Pressure switches (Open or Closed). It also
shows the current status (On or Off) of the compressor and indicates "Min On"
if the compressor minimum off time has elapsed. If the minimum off time has
not elapsed, the display will show "Min Off" and the actual minimum off time will
appear next to it.

4.5.2.9 EEV Status
Displays the current operating position of the electronic expansion valve. The
current suction pressure and temperature and the superheat temperature appear
below. The bar gauge next to the valve icon provides a visual representation of
the output signal controlling the valve position.

(Continued on next page)
4.5.2.10 EHGB Status
Displays the current operating position of the electronic hot gas bypass valve. The current suction temperature appears below. The bar gauge next to the valve icon provides a visual representation of the output signal controlling the valve position.

4.5.2.11 Fan Status
The Fan Status screen displays symbols indicating the operating status of the upper, middle and lower fans. The symbols are animated when the fans are running. If a fan is not running, the symbol will appear instead. The value of the proportional output signal (0 to 100%) that controls each fan appears in the field to the right of each symbol. The animated icons are linked together indicating the three fans are being controlled to the same fan speed setting (default). The controller also displays the temperature value for the sensor from each fan zone. The fans may be linked or unlinked in any combination for individual zone temperature control (see Section 4.5.4.1).

The message "Var from Avg" or "Temp Prop" appears indicating the speed control configuration (see Section 4.4.4.1). The message in the field is replaced with "Dehum" when the system is in the dehumidification mode. In the dehumidification mode the animated icons are always inked together indicating the three fans are being controlled to the same (dehumidification) fan speed setting.

4.5.2.12 Group Information Menu Screens
The Group Information menu screens only appear if the controller is set up to operate multiple A/C unit work group. See Section 4.6.2.8 for a more detailed description of these screens.

4.5.2.13 Software Version/Date
Displays the type of A/C system the controller is configured for (W/G, AR), the STULZ software version and its release date.
4.5.3 Alarm Log

No password is required to view alarm display messages. If an alarm condition occurs, the first active alarm may be displayed by pressing the Alarm (页面) key. The alarm screen display text message will remain unchanged until the alarm condition is cleared.

If the alarms log is entered from the main menu, any other active alarm message(s) may be viewed by using the Up (↑) and Down (↓) arrow keys to scroll through alarm messages.

4.5.3.1 Alarms

The red LED backlight within the alarm key will illuminate any time an alarm condition is present or previous alarms existed without having been reset or cleared. An audible alarm may also activate when an alarm condition occurs. The audible alarm may be enabled or disabled in the Service>Options menu loop. The first active alarm screen may be displayed by pressing the Alarm (页面) key. The Alarm display provides you with a text message describing the abnormal operating condition. Use of the Up (↑) and Down (↓) arrow keys allows you to scroll for any additional alarm messages. Only active alarm screens will be displayed when the Alarm (页面) key is pressed. The alarm screen display will remain unchanged until the alarm condition is corrected and the alarm key is pressed again to clear the alarm.

When access is gained to the Alarm Log loop, use of the Up (↑) and Down (↓) arrow keys allows you to scroll through the log for a history of alarm messages. The alarms log may be cleared in the Service>Alarm log menu loop.

The application software supports two (2) types of alarms, “Non-Critical” and “Critical”. Any alarm may be programmed to activate the “Custom” (user configured) alarm relay contacts.

4.5.3.2 Non-Critical Alarms

A Non-Critical alarm will activate the alarm screen with which it is associated. These alarms are programmed to activate the “Summary Fault” alarm and close the “Summary Fault” relay contacts without stopping unit operation. Some examples of the factory programmed, Non-Critical alarms are:

- High Temperature
- Low Temperature
- High Humidity
- Low Humidity
- Moisture Detection
- Change Filter
- Sensor Failure
- Communication Failure

4.5.3.3 Critical Alarms

Critical Alarms will coincide with automatic shut down of the A/C unit(s) equipment as needed to prevent possible system damage. The A/C unit(s) equipment will remain shut down until the alarm condition(s) are no longer sensed and the controller has been reset. Some examples of Critical alarms are:

- No Air Flow (Air Proving Switch)
- High Head Pressure
- Low Suction Pressure
- Fire/Smoke Detection
- Off by Internal Alarm (Only for grouped systems)
4.5.3.4 Alarm Screen Messages

<table>
<thead>
<tr>
<th>ALARM MESSAGE</th>
<th>DESCRIPTION OF ALARM CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Temperature</td>
<td>Air temperature is above user defined alarm setpoint.</td>
</tr>
<tr>
<td>Low Temperature</td>
<td>Air temperature is below user defined alarm setpoint.</td>
</tr>
<tr>
<td>High Humidity</td>
<td>Humidity is above user defined alarm setpoint</td>
</tr>
<tr>
<td>Low Humidity</td>
<td>Humidity is below user defined alarm setpoint</td>
</tr>
<tr>
<td>Sensor Failure</td>
<td>Sensor is disconnected or faulty. (The failed sensor is identified.)</td>
</tr>
<tr>
<td>Communication Failure</td>
<td>External and/or internal communication lost (BMS or pLAN)</td>
</tr>
<tr>
<td>Condensate Pan Full</td>
<td>Water level in condensate pan is reaching an unsafe level.</td>
</tr>
<tr>
<td>Moisture</td>
<td>Water sensed by any combination of a leak detector or condensate pan level switch.</td>
</tr>
<tr>
<td>Fan Failure</td>
<td>Upper, Middle and/or Lower fan failure.</td>
</tr>
<tr>
<td>Change Filter</td>
<td>Filter replacement time interval elapsed; filter needs to be replaced.</td>
</tr>
<tr>
<td>No Air Flow</td>
<td>Insufficient airflow per air proving switch.</td>
</tr>
<tr>
<td>Smoke/Fire</td>
<td>An alarm condition detected by the smoke detector or firestat.</td>
</tr>
<tr>
<td>Optional Temp High Alarm</td>
<td>Temperature is above alarm threshold (user configurable).</td>
</tr>
<tr>
<td>Optional Temp Low Alarm</td>
<td>Temperature is below alarm threshold (user configurable).</td>
</tr>
<tr>
<td>High Head Pressure</td>
<td>Head Pressure is above user configured alarm threshold.</td>
</tr>
<tr>
<td>Low Suction Pressure</td>
<td>Suction Pressure is below user configured alarm threshold.</td>
</tr>
<tr>
<td>EVD Driver Offline</td>
<td>EEV & EHGB control driver error.</td>
</tr>
</tbody>
</table>
4.5.4 Control Menu Loop

From the Control Menu you may select from 4 screen menus: Setpoints, Alarm Setpoints, Clock and Version. The controller may be programmed by the user to require level 1 password authorization to enter this menu loop (see Section 4.2.6). Once password access is granted, you may select and adjust the setpoints controlling the performance of the unit, enable alarms and determine their setpoints and set the clock.

The Setpoints (SET) screens allow you to view and adjust the temperature and humidity setpoint control parameters and compare them to system level operating data derived from the various Sensor/Transmitter inputs. See Section 4.5.4.1.

The Alarm Setpoints (ALARM SET) screens allow you to enable and adjust the high and low temperature and humidity alarm setpoints and offsets and compare them to the control setpoints and to the system level operating data derived from the Sensor/Transmitter inputs. See Section 4.5.4.2.

From the Clock screens you may view and adjust the current time, date and day and set up operating schedule(s) and setpoints for the A/C system. See Section 4.5.4.3.

Two Version screens are provided for information only. They show controller hardware and software details that are useful to STULZ Product Support if technical assistance is needed.
4.5.4.1 Setpoint Screens

The Setpoints (SET) screens below may be accessed from the Control menu.

Temperature

Setpoint 72.0°F
Controlling to Sup
STATUS

Temp: 72.6°F Set:72.0°F
Dew: 50.1°F

Press (↑) Key

Humidity

Setpoint 45.0%
Controlling to Ret (DP calculated from temp at same location)
STATUS

Hum: 45.5% Set:45.0%
Dew: 42.0°F

Press (↑) Key

The Temperature and Humidity setpoint screens allow you to view and adjust the control setpoints and compare them to system level operating data derived from the various Sensor/Transmitter inputs.

4.5.4.2 Alarm Setpoint Screens

The Alarm Setpoints screens may be accessed from the Control menu. These screens allow you to enable the High and Low temperature and humidity alarms, adjust their setpoints and compare them to the control setpoints and to the current system level operating data derived from the sensor inputs.

Temperature Alarm

High alarm Enable: Yes
Setpoint 80.0°F
STATUS

Temp: 72.6°F Set:72.0°F
Dew: 50.1°F

Press (↑) Key

Low Temperature Alarm

Temperature Alarm

Low alarm Enable: Yes
Setpoint 60.0°F
STATUS

Temp: 72.6°F Set:72.0°F
Dew: 50.1°F

Humidity Alarm

High alarm Enable: Yes
Setpoint 70.0%
STATUS

Hum: 45.6% Set:45.0%
Dew: 50.1°F

High Humidity Alarm

(Continued on next page)
Humidity Alarm

Low alarm Enable: Yes
Setpoint 30%

STATUS
Hum: 45.6% Set: 45.0%
Dew: 50.1°F

Low Humidity Alarm

Following the alarm enable screens are the alarm offset screens. From these screens you may adjust offsets for the high and low alarm setpoints at which the alarm will be cancelled. The entered offset applies to both the upper and lower values entered in the Alarm Setpoints Screens. The offset is subtracted when it's applied to the high alarm setpoint and it is added when it's applied to the low alarm setpoint.

EXAMPLE 1: Temperature Alarm Offset

Temperature Alarm
Offset: 5.0°F

STATUS
Temp: 72.6°F Set: 72.0°F
Dew: 50.1°F

If the offset for the temperature alarm is set at 5.0°F (default), the high temperature alarm will cancel when the actual temperature drops to the High Temperature Alarm setpoint (80.0°F) - the Offset (5.0°F)
or,
80.0°F - 5.0°F = 75.0°F
The High Temperature Alarm will cancel at 75°F.

Conversely, the low temperature alarm will cancel when the actual temperature rises to the Low Temperature Alarm setpoint (60.0°F) + the Offset (5.0°F)
or,
60.0°F + 5.0°F = 65.0°F
The Low Temperature Alarm will clear at 65.0°F

EXAMPLE 2: Humidity Alarm Offset

Humidity Alarm
Offset: 5.0%

STATUS
Temp: 72.6°F Set: 72.0°F
Dew: 50.1°F

High Temperature Alarm Offset

If the offset for the humidity alarm is set at 5% (default), the high humidity alarm will cancel when the actual humidity drops to the High Humidity Alarm setpoint (70.0%) - the Offset (5.0%)
or,
70.0% - 5.0% = 65.0%
The High Humidity Alarm will cancel at 65%.

4.5.4.2.1 Dirty Filter Timer

Dirty Filter Alarm
Enable: Yes
Days between filter change alarms: 45

This screen allows you to enable the dirty filter notification timer which provides an alarm indication when it's time to clean or change the air filter. The filter change period is adjustable and should be set according to the conditions at the site. Extremely dusty environments may require more frequent filter changes.

4.5.4.3 Clock Screen

The Clock screens may be accessed from the Control menu. From this screen you may set the time, date and day.

Set Clock
Time: 00:00
Date: 00/00/0000
Day: XXXXXXX

The Set Clock screen allows you to set and/or adjust the current time, date and day.
4.5.5 Service Menu Loop

The Service screens allow the user to enter cut-in and cut-out values, calibrate the system control sensor(s), save and restore parameters and view the event log. The Service menu may be entered and programmed by the user via the password menu (requires level 2 password). Once password access is granted, the user may access the service screens.

4.5.5.1 Humidity

The cut-in/cut-out offsets for the Dehumidification modes may be adjusted from the Service>Humid menu.

4.5.5.2 Alarms

A log of events is stored for view from the Service>Alarms menu. This menu displays the last 50 events sequentially numbered in order of occurrence. The alarm log is cleared by pressing the Alarm (↓) key while in this menu.

NOTE

If the Alarm (↓) key is pressed when in any of the Service>Alarms screens, all stored alarm messages will be permanently erased from the controller’s memory.
4.5.5.3 Sensors

From the Service>Sensors menu you may access multiple display screens to enter offsets for calibrating the unit’s various temperature, humidity and pressure sensors.

Sensor Offsets

- **Return Air Temp**
 - Sensor Type: 4-20 mA
 - Apply Offset: 0.0%
 - Displayed: 0.0%

- **Return Air Humidity**
 - Apply Offset: 0.0%
 - Displayed: 0.0%

- **Upper Zone Air Temp**
 - Sensor Type: NTC
 - Apply Offset: 0.0°F
 - Displayed: 0.0°F

- **Middle Zone Air Temp**
 - Sensor Type: NTC
 - Apply Offset: 0.0°F
 - Displayed: 0.0°F

- **Lower Zone Air Temp**
 - Sensor Type: NTC
 - Apply Offset: 0.0°F
 - Displayed: 0.0°F

- **Discharge Press Sensor**
 - Apply Offset: 0
 - Displayed: 000 psi

- **Suction Pressure S1**
 - Apply Offset: 0.0psig
 - Displayed: 0.0psig

- **Suction Temp (EEV) S2**
 - Apply Offset: 0.0°F
 - Displayed: 0.0°F

- **Suction Temp (EHGB) S4**
 - Apply Offset: 0.0°F
 - Displayed: 0.0°F

Additional sensor offset screens are available for optional sensors if enabled at the factory such as: Remote Supply Air Temp and Remote Supply Air Humidity.

NOTE

When calibrating sensors, an offset at one extreme may produce an error at the other extreme. Always verify that any offset is valid over the entire range of the sensor.

4.5.5.4 Blower

From the Service>Blower menu you may access screens to view and adjust the blower speed parameters.

4.5.5.4.1 Temp Zone Set Up

If your unit is configured for zone temperature control, Blower>Temp Zone display screens are available for the upper, middle and lower fan. These screens allow you to adjust minimum and maximum fan speed settings and modify the fan speed PI control response parameters. The variable dampening value, used with Variance From Average fan speed control (see Section 4.4.4.1.1), adjusts the effect of the variance on the final fan speed.

4.5.5.4.2 Blower Set Up

The blower fans will operate at the Dehum Fan Speed setting during dehumidification. Dehumidification fan speed is limited to the most restrictive value between the factory preset minimum and maximum, the Temp Zone minimum and maximum, and the speed setting for the operating mode. The higher minimum value is the low speed limit and the lower maximum value is the high speed limit.

Ex: If the Dehum Speed is set to 60% in the Blower Set Up screen and the maximum speed for the Lower Temp Zone fan is set to 75% and the factory-set maximum
fan speed is 90%, the fans will run at 60% during dehumidification.

<table>
<thead>
<tr>
<th>Dehum Speed Setting</th>
<th>0% (Off)</th>
<th>10% Factory Pre-set Minimum</th>
<th>25% Zone Minimum</th>
<th>75% Zone Maximum</th>
<th>100% Factory Pre-set Maximum</th>
</tr>
</thead>
</table>

Fans will run at 60% of full speed during dehumidification.

If the Dehum Speed is set to 80%, the lower fan will run at 75% during dehumidification as it is limited by the maximum speed setting for the lower temperature zone.

<table>
<thead>
<tr>
<th>Dehum Speed Setting</th>
<th>0% (Off)</th>
<th>10% Factory Pre-set Minimum</th>
<th>25% Zone Minimum</th>
<th>75% Zone Maximum</th>
<th>100% Factory Pre-set Maximum</th>
</tr>
</thead>
</table>

Lower fan will run at 75% of full speed during dehumidification (limited by the Temperature Zone Maximum).

4.5.5.5 Options Menu Loop

SERVICE

OPTIONS

Digital In

From the Service>Options menu you may press the Enter (↵) key to access a menu loop with screens used to set up and adjust various options.

4.5.5.5.1 Control, Startup

The Service>Options>Control, Startup screen allows you to select the control method.

- **Standard** = Temperature/Humidity Control
- **Dewpoint** = Dewpoint Control
- **<Reserved>** = For future use. **DO NOT select this control method.**

- "Auto on powerup"- If set to On, the A/C unit turns on automatically when main power is applied.

- "Auto on remote"- If set to On, the A/C unit may be turned on via a remote On/Off switch.

- "EPO Option" (Emergency Power Off)- If set to On, the off delay timers are bypassed so compressors, blowers etc. stop operating immediately when the unit is turned off by a remote on/off signal or a critical alarm.

- "Suppress Buzzer"- Allows you to enable or disable the alarm signal buzzer.

4.5.5.5.2 Unit Timers

The Service>Options>Unit Timers screen allows you to adjust the unit timers controlling various start-up or shutdown delay periods.

- "Startup delay"- Time delay before blower(s) begin operating after pushing the Enter (↵) key or
after turning the unit on with a remote on command.

"Airflow delay"- Time delay for allowing the blowers to reach adequate speed before the air proving sensor actively monitors an airflow alarm condition.

"Shutdown delay"- Time delay before unit stops operating after pressing the Enter (➡) key for 3 seconds or after turning it off with a "remote off" command.

"Recovery time"- Time period after startup that temperature and humidity alarms are masked from signalling nuisance high or low temperature and humidity alarms.

4.5.5.3 T/H Offset Scaling

<table>
<thead>
<tr>
<th>T/H Offset Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Scale</td>
</tr>
<tr>
<td>Humidity Scale</td>
</tr>
<tr>
<td>Scales effect all the cut-in, cut-out values</td>
</tr>
</tbody>
</table>

The Service>Options>T/H Offset Multiplier screen allows you to enter a multiplier to apply to scale both the temperature and humidity cut-in/cut-out offsets. The multipliers are factored to the system offset values set by the factory (shown below).

Default Cut-in/Cut-out Offsets

<table>
<thead>
<tr>
<th>Temp.</th>
<th>Cut-in Offset= 2.0°F; Cut-out Offset= 0.3°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td>Cut-in Offset= -5.0%; Cut-out Offset= -2.0%</td>
</tr>
</tbody>
</table>

EXAMPLE 1: Temperature Offset Multiplier

With the default cut-in offset for temperature at 2.0°F, a multiplier of 1.0 x 2°F = 2°F. This means the unit will begin operating in the cooling mode at 74.0°F (Setpoint 72.0°F + Offset 2°F).

Conversely, with the default cut-out offset at 0.3°F, the cooling mode will turn off at 72.3°F.

(Setpoint 72.0°F + (1.0 x Cut-out Offset 0.3°F))

72.0°F + 0.3°F = 72.3°F

EXAMPLE 2: Temperature Offset Multiplier

If 2.0 is entered, the offset for temperature is multiplied by 2.0. (2.0 x 2°F= 4°F). This means the unit will begin operating in the cooling mode at 76.0°F (Setpoint 72.0°F + Offset 4°F).

Conversely, the cooling mode will turn off at 72.6°F

(Setpoint 72.0°F + (2.0 x Cut-out Offset 0.3°F)).

72.0°F + 0.6°F = 72.6°F

EXAMPLE 3: Humidity Offset Multiplier

If 1.3 is entered, the offset for humidity is multiplied by 1.3. (1.3 x -5%= -6.5%). This means the unit will begin operating in the dehumidification mode at 38.5% (Setpoint 45.0% + Offset -6.5%).

Conversely, the dehumidification mode will turn off at 42.4%.

(Setpoint 45.0% + (1.3 x Cut-out Offset -2.0%))

45.0% + (-2.6%) = 42.4%
4.5.5.4 Custom Setup

From the Service>Options>Custom Setup screen you may press the Enter key to access a menu loop to set up custom alarm features. Any controller alarm or signal failure will activate the summary alarm output. Upon receiving an alarm indication, the user may press the alarm key and call up alarm screen messages.

4.5.5.5 Customer Alarm Input (Optional)

If enabled, a customer provided alarm input may be used to activate the Summary Alarm relay and show a specific Customer Alarm message in the alarm display screen. A Customer Alarm message may simply be displayed as "CUSTOMER ALARM 1" as shown below, or you may press (↑) and use the (↑) and (↓) arrow keys to construct a specific alpha/numeric message in the field stating the specific alarm condition in your own terms; i.e. "GAS DETECTION", "INTRUSION ALARM", etc. The Customer Alarm message may be set up on one line with up to 20 characters.

NOTE: Display screens shown with a dashed border appear only if the applicable feature is enabled.

4.5.5.6 Custom Alarm Setup (Optional)

The E² controller may be enabled to activate a Custom Alarm output and energize a designated N.O./N.C. relay. A custom alarm output is set up by adding the binary bitmask numbers assigned to the specific alarms and signal failures you wish to monitor via the relay and then entering them in the Custom Alarm Setup screen.

NOTE: Custom alarm display screens may appear even if the feature is not enabled. In this case, changes made to these screens will have no effect.

You can select any mix of the 48 alarm variables as shown in the tables that follow. As an example, for a custom alarm based only on the occurrence of moisture alarm, fire/smoke, condensate pan, failure of the return humidity sensor you would enter the following bitmask values for the applicable alarm numbers and enter 0 for the rest:

- Custom Alarm number 1 - 8.............Moisture alarm (No. 4) = 8
- Custom Alarm number 9 - 16..........Fire/smoke (No. 10) + Condensate pan (No. 12) = 10 (2+8)
- Custom Alarm number 25- 32............Return humidity sensor (No. 29) = 16

The custom alarms are set up by entering the bitmask totals developed from the tables on the following page.
Service Menu

Factory Default Bitmask Total

129

Alarms 1 to 8

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Upper Fan alarm</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Lower fan alarm</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Middle fan alarm</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Moisture alarm</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Emergency shutdown</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Remote shutdown</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>Customer alarm 1</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Airflow alarm</td>
<td>128</td>
<td>128</td>
</tr>
</tbody>
</table>

Alarms 1 to 8 - Continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factory Default Bitmask Total</td>
<td></td>
<td>129</td>
</tr>
</tbody>
</table>

Alarms 9 to 16

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Filter alarm</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Fire/Smoke alarm</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>Water detection alarm</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Condensate pan alarm</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>Circuit 1 low pressure alarm</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>Circuit 1 high pressure alarm</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>15</td>
<td>Dual power input A alarm</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Dual power input B alarm</td>
<td>128</td>
<td>0</td>
</tr>
</tbody>
</table>

Alarms 9 to 16 - Continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factory Default Bitmask Total</td>
<td></td>
<td>62</td>
</tr>
</tbody>
</table>

Alarms 17 to 24

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Humidifier alarm</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>High temperature alarm</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Low temperature alarm</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>High humidity alarm</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Low humidity alarm</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>High water temperature CW1</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Low water temperature CW1</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>Loss of power</td>
<td>128</td>
<td>128</td>
</tr>
</tbody>
</table>

Alarms 17 to 24 - Continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factory Default Bitmask Total</td>
<td></td>
<td>191</td>
</tr>
</tbody>
</table>

Alarms 25 to 32- (Sensor Failure Alarms)

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Lower temperature sensor fail</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Middle temperature sensor fail</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>Optional temperature sensor fail</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>Upper temperature sensor fail</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>29</td>
<td>Return humidity sensor fail</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>DX1 discharge pressure fail</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>31</td>
<td>Static air pressure sensor fail</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>32</td>
<td>DX1 suction press sensor fail</td>
<td>128</td>
<td>128</td>
</tr>
</tbody>
</table>

Alarms 25 to 32- (Sensor Failure Alarms) - Continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factory Default Bitmask Total</td>
<td></td>
<td>255</td>
</tr>
</tbody>
</table>

Alarms 33 to 40- (Sensor Failure Alarms)

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>DX1 suction temp sensor fail</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>Custom sensor 1 fail</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>Reserved</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>Reserved</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>Reserved</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>Reserved</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>Reserved</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>Reserved</td>
<td>128</td>
<td>0</td>
</tr>
</tbody>
</table>

Alarms 33 to 40- (Sensor Failure Alarms) - Continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factory Default Bitmask Total</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Alarms 41 to 48

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>System Off</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>BMS keep alive off</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>Customer alarm 2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>Customer alarm 3</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>Flow switch alarm</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>Reserved</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>Reserved</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>Reserved</td>
<td>128</td>
<td>0</td>
</tr>
</tbody>
</table>

Alarms 41 to 48 - Continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factory Default Bitmask Total</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: The default values *(shown in bold italics)* are factory set to generate a custom alarm output on any of the major alarms and any sensor failure. Only the enabled sensors can generate an alarm. To enable an additional custom alarm, add the alarm bitmask number to the factory default total and enter the new total for the applicable alarm numbers in the Custom Alarm Setup screen. If an alarm condition appearing in the following tables is detected, it needs to be reset at the interface display panel or via the BMS.
4.5.5.7 Work Group Screens

The Service>Group display screens shown below only appear if two or more units are wired together as a group. They allow you to configure parameters that apply to how the A/C units interact in the work group.

<table>
<thead>
<tr>
<th>Service Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.5.6 Digital In</td>
</tr>
</tbody>
</table>

See Section 4.6 for a detailed description of how work groups are set up and for information on setting the operating parameters available in these screens.

4.5.5.7 Run Hours

From the Service>Run Hours menu you may access a loop consisting of the component run hours display screens applicable to your unit using the Up (↑) and Down (↓) arrow keys. Each screen displays the number of run hours and number of starts logged for the component (i.e. compressor, fans, air filter changes, etc.). The run hours and starts values may be reset to 0 from the display screens. The values displayed in each screen are the values logged since the last time the screen was reset.

4.5.5.8 BMS Communication

The Service>BMS Comm menu is used to set up parameters to allow a BMS (BAS) to interface with the controller. See Section 4.7.2 for a description of this screen and instructions for setting up BMS communication.
4.5.5.9 Save Configuration

The default setpoints may be restored and passwords may be changed from the Service>Save Cfg menu.

The first Service>Save Cfg menu screen allows you to save any adjustments made in Service level menu screens as the new "Customer" parameters or, restore the controller to the previously saved "Customer" parameters. The user may also restore the controller to original factory default parameter values shown in Table 1.

Use the Enter (↵) key to move the flashing cursor to the field you wish to confirm and press the Up (↑) or Down (↓) arrow key. The word "No" will momentarily change to "Yes" indicating the command has been accepted. Then press the Enter (↵) key sequentially until the flashing cursor returns to the top left corner of the screen.

The table that follows are the Factory default parameters.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DEFAULT VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Setpoint</td>
<td>72° F</td>
</tr>
<tr>
<td>Compressor Cut-in</td>
<td>74° F</td>
</tr>
<tr>
<td>Compressor Cut-out</td>
<td>72.3° F</td>
</tr>
<tr>
<td>Minimum Fan Speed</td>
<td>40%</td>
</tr>
<tr>
<td>Maximum Fan Speed</td>
<td>100%</td>
</tr>
<tr>
<td>Dehumidification Fan Speed</td>
<td>60%</td>
</tr>
<tr>
<td>Humidity Setpoint</td>
<td>45% RH</td>
</tr>
<tr>
<td>Dehumidify Cut-in</td>
<td>50% RH</td>
</tr>
<tr>
<td>Dehumidify Cut-out</td>
<td>47% RH</td>
</tr>
</tbody>
</table>

The second Service>Save Cfg menu screen allows you to set new passwords for entering the Control and Service menus.

4.5.5.10 Factory Menu

The Factory menu loop may be accessed from the Service>Factory screen. You must enter the factory level password to gain access to the loop. Contact STULZ Product Support for the password and for guidance when adjustments must be made at this level.
4.6 Communication With The Controller

It is possible for the \(E^2 \) controller to communicate in multiple ways. The controller may be set up to utilize a pLAN network to link with additional \(E^2 \) controllers to create a work group consisting of multiple A/C units (see Section 4.6.1).

Using an expansion card, the unit may also be connected to a BMS for monitoring and control of data points using a variety of different serial communication protocols (see Section 4.7).

4.6.1 Work Group Set-up

The controller may be networked with a group of A/C unit controllers to manage their outputs as a system in an N+M (M = number of standby units) group. The controllers from up to seven additional A/C units may be tied to a Lead controller. The number of units to be assigned as Active, Capacity Assist or Standby duty is to be configured by the factory however, they may be configured in the field with assistance from STULZ Product Support. A unit may also be designated as "Out of Service".

The Main screen of each unit in the work group will indicate that unit's duty assignment in the bottom field. If the controller is the group Lead, it will be indicated in the bottom field also.

One controller may be designated as the work group lead and networked with the controllers from a series of up to 7 additional A/C units. If configured for multi-unit operation, the work group lead controller display panel allows access to the same data and group control sensor choices that are available from networked system controller display panels.

4.6.1.1 Standby

If the lead controller in the work group loses a signal acknowledgement from an active A/C unit in the group, that A/C unit is deemed as failed or taken out of service. The failed unit will be replaced with the first available standby unit from the work group. The standby unit is cycled on and designated as the new active unit.

4.6.1.2 Capacity Assist

The Capacity Assist option can be used to maximize efficiency for conservation of energy and to more precisely control capacity at low demand. This feature enables Active A/C units to handle the demand up to a certain temperature/humidity setpoint and then enables additional units to begin operating as needed. If the Active A/C units are running and unable to satisfy the demand, Capacity Assist A/C unit(s) may be programmed to turn on to assist the Active units.

Each Capacity Assist unit may set to control operation based on it's local temperature/humidity sensor values or control operation based on Network sensor values transmitted from the Lead controller. Multiple Capacity Assist units are typically set with each unit in the group assigned incrementally increasing/decreasing offsets for cooling, humidifying and dehumidifying so they will turn on one at a time only if the unit(s) currently operating are unable to satisfy the demand. They should incrementally turn off as each unit reaches it’s cut-out setpoint, while active A/C unit(s) continue to maintain room conditions at the desired level.

4.6.1.3 Unit Rotation

In this mode, the Lead controller will rotate duty between the grouped A/C units to promote equal run time and will rotate the role of group lead. When set up for unit rotation, the A/C units will rotate duty in order of their group addresses. Active, Capacity Assist and Standby
units are all in the rotation cycle so even a standby unit will be cycled into active duty on a scheduled basis. A/C units in the group may have their duty assignments locked so they do not join the rotation cycle (and cannot take the lead). In this case the message "No_Rot" appears after the duty assignment displayed in the main screen.

An Active_No_Rot unit is always On therefore, it will not rotate out. An Active_No_Rot unit will still be able to take the role as lead controller during a rotation. Units designated as "Out of Service" do not rotate nor can they be used as lead units.

The rotation time period is typically 1 week, however it may be set by the user via the Factory menu. Call STULZ Product Support for assistance when accessing the Factory menu.

4.6.1.4 Out of Service
A unit may be removed from the group entirely by placing it Out of Service. In this mode, the unit will not operate. A unit may be placed in this mode as a safety measure to prevent it from unexpectedly starting when performing maintenance or repairs.

4.6.2 Configuring a Work Group
A workgroup can consist of up to 8 controllers (I/O boards) with pLAN addresses 1 to 8. Their corresponding display terminals will be assigned pLAN addresses from 32 down to 25. The E² controller program is defaulted with the controller address set to 1 and its terminal (display) address set to 32. As such, a normal stand-alone controller does not need any changes made to either the controller or the terminal address. The method to setting up work groups is to retain the first (group lead) controller’s pLAN address as #1 and terminal address as #32 so that the sum of the addresses equals 33. The first controller added to the group is assigned pLAN address #2 and its terminal is assigned address #31, the sum of which again equals 33.

NOTE: The sum of the controller and terminal address numbers must always equal 33.

A work group should ALWAYS start with controller address 1 and go up from there. DO NOT skip over controller addresses. The list of suitable controller/display terminal address pairs is shown below:

<table>
<thead>
<tr>
<th>Controller (I/O board)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Terminal</td>
<td>32</td>
<td>31</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
</tr>
</tbody>
</table>

You must assign the terminal and controller I/O board addresses for each controller to be grouped. Review Sections 4.6.2.1 to 4.6.2.3 first, before turning power on and the assigning addresses. Do not interconnect the controllers together before assigning their terminal and I/O board pLAN addresses.

The first step is to change the terminal address of each controller to 0 referring to Section 4.6.2.1 below. You must set the terminal address to 0 before you can assign the controller (I/O board) address.

NOTE: If the terminal remains inactive (no key is pressed) for more than 30 seconds, the group setup procedure is exited automatically, without saving any changes.

4.6.2.1 Configure the Terminal Address
The address of the terminal (display) can only be configured if it’s telephone jack is connected to the I/O control module in the electric box and power is turned on. The factory default value for the display terminal address is 32. To reassign the terminal address, press and hold the Up (↑), Down (↓) and Enter (↵) keys simultaneously for 5 seconds until the Address Configuration screen shown below appears with the flashing cursor in the top left corner:

Address Configuration

1. To change the address of the terminal (Display address setting), press the Enter (↵) key once. The cursor will move to the address field (nn).
2. Use the Up (↑), Down (↓) keys to select the desired value (0), and confirm by pressing Enter (↵) again.
The Display Address Changed screen will appear indicating the display address selected is not the same as the one saved previously and the new value will be saved to the permanent memory.

3. Once the terminal address is set to zero, cycle the power to the unit Off and then back On.

NOTE: If the "Display address setting: ___" field is set to 0, the terminal will communicate with the controller (I/O board) using point-to-point protocol (not pLAN). The display field "I/O Board address: ___" will disappear as it has no meaning until you set the controller (I/O board) pLAN address.

4.6.2.2 Configure the Controller (I/O Board) pLAN Address

Immediately after turning power back on, press and hold the Alarm () and the Up (↑) Arrow keys simultaneously for 10 to 15 seconds. First you will see a display message “self test please wait” then the pLAN Address Configuration screen shown below will appear. **Don’t press the (◄) key, the cursor is already in the modifiable field.**

PLAN ADDRESS: 1

- UP: INCREASE
- DOWN: DECREASE
- ENTER: SAVE & EXIT

Next, press the Up (↑), Down (↓) and Enter (◄) keys simultaneously. Reconfigure the terminal address following the steps in Section 4.6.2 again. This time set the terminal address to match the corresponding controller (I/O board) address. If the controller is assigned address 2, then the corresponding terminal address should be set to 31 as shown in the table on the preceding page. If the next controller is assigned address 3, the corresponding terminal should be set to 30.

After setting the correct terminal address, press the (◄) key once to confirm your selection. A message “NO LINK” will appear. At this point, the terminal has been set with the correct address for the controller and the controller has been set for the terminal, but now they need to be assigned to each other.

4.6.2.3 Assign the Terminal to the Controller

1. Access the Terminal Address Configuration screen again using the Up (↑), Down (↓) and Enter (◄) keys.
2. Press the (◄) key until the cursor moves to the field "I/O board address: ___".
3. Using the (↑) (↓) keys, enter the address (1 – 8) for the controller I/O board.
4. Press the (◄) key twice to display the Terminal Configuration screen shown below.

Terminal Configuration

<table>
<thead>
<tr>
<th>P:02 Adr</th>
<th>Priv/Shared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trm1 31</td>
<td>Pr</td>
</tr>
<tr>
<td>Trm2 None</td>
<td>--</td>
</tr>
<tr>
<td>Trm3 None</td>
<td>-- Ok?No</td>
</tr>
</tbody>
</table>

5. Here too, the (◄) key moves the cursor from one field to the next, and the (↑) (↓) keys change the value of the current field. The field "P: 0_" depicts the pLAN address (1 – 8) assigned to the I/O board. In the example shown, the controller has been assigned address 2.

6. Press the (◄) key to move to the field "Trm1 xx". The field represents the address of the terminal associated with the controller. Using the (↑) (↓) keys enter the address (25 – 32) of the terminal assigned to the controller (I/O board). In the example shown, address 31 has been entered for the first A/C unit added to the group.
7. The Priv/Shared column indicates the type of terminal. The workgroup is setup using private terminals. **Do not** change the value ("Pr"). Press the (→) key to move to the last field.

8. Enter the field "Ok?No", choose "Yes" using the (↑) (↓) keys and confirm by pressing (←) to save the data and exit the group set up procedure.

9. Referring to the wiring diagram provided with your A/C units, interconnect the units together with the pLAN cable(s) provided.

4.6.2.4 Fault messages

If the terminal detects the status of the I/O board it is associated with is off-line, the display shows the message: "I/O Board xx fault". If this appears, check the Signal LED's on the control I/O module (Figure 11) for an error signal. See Section 4.8 for guidelines on analyzing the signal LED's.

On the other hand, if the terminal receives no signal from the network, the display shows the following message: "NO LINK". If this appears, check the pLAN cables and ensure they are connected properly.

4.6.2.5 Displaying the Network Status and Firmware Version

Once each A/C unit is configured with its new controller and terminal pLAN address, you can examine the entire network set up. Press the group set up keys (↑) (↓) (←) together as done to access the Address Configuration screen but continue holding after the Address Configuration screen appears for at least 5 seconds until the "Network Status" screen appears.

The Network Status screen, shown below, provides overview of the pLAN group indicating which and how many devices are connected and the corresponding pLAN addresses.

![Network Status](image)

Key:
- ▶️: Controllers (I/O Boards) active in network
- ▼️: Terminals active in network
- ▲️: No device connected

The example shown represents:
- Controllers active in network, addresses: 1, 2, 3
- Terminals active in network, addresses: 30, 31, 32.

The terminal for controller 1 is always addressed 32; the terminal for controller 2 is always addressed 31, and so on such that the sum of the controller address number and the terminal address number always equals 33. Therefore, when viewing controller number 1, its terminal address will be 32. When viewing controller number 2, its terminal address will be 31, and so on.

Press a (↑) or (↓) arrow key to display the next screen showing the version of the firmware residing in the terminal.

![Firmware Version](image)

Firmware Version

To exit the Network Status loop, press (←).

The next step is to access the Factory>Group screens used to configure the work group parameters (Section 4.6.2.6).
4.6.2.6 Configure Work Groups

The Factory>Group menu screens only appear when multiple A/C units are grouped. These menu screens allow you to define grouping parameters (duty, rotation, offsets, etc) for the A/C units in the work group. These screens should be accessed after setting up the work groups (Section 4.6.2). The Factory>Group menu screens may be accessed from the main screen by pressing the Prg key and scrolling through the menu selections until the word Factory appears in the center of the screen.

Press the Enter (↵) key twice and you'll be prompted to enter the password for the Factory level (contact STULZ Product Support for the password).

Once the Factory level password is entered, press Enter (↵) to call up the menu screens. From here you may press the Up (↑) or Down (↓) arrow keys to scroll through the Factory menu selections.

When the word GROUP appears in the center of the screen, press the Enter (↵) key to access the Factory>Group menu screens. From here you may use the Up (↑) or Down (↓) arrow keys to scroll through the Factory>Group menu selections.

<table>
<thead>
<tr>
<th>Display description</th>
<th>Description</th>
<th>Variables</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>Assign the duty of the A/C unit within the group.</td>
<td>0= Out of Service 1= Active 2= Standby 3= Assist 4= Active_No_Rot 5= Standby_No_Rot 6= Assist_No_Rot</td>
<td>1</td>
</tr>
<tr>
<td>Total in Network</td>
<td>Enter the total number of A/C units in the group.</td>
<td>0 to 9</td>
<td>1</td>
</tr>
<tr>
<td>Min Number Active</td>
<td>Enter the total number of active A/C units in the group.</td>
<td>0 to 9</td>
<td>1</td>
</tr>
<tr>
<td>Enb lead override</td>
<td>If set to yes, you may manually assign the lead unit in the following field.</td>
<td>0= No 1= Yes</td>
<td>No</td>
</tr>
<tr>
<td>Lead Unit</td>
<td>Identifies which A/C unit controller is currently the lead unit in the group. If “Enb lead override” is set to yes, you may select which unit is lead.</td>
<td>1 to 8</td>
<td>1</td>
</tr>
</tbody>
</table>
From this screen you may set the schedule to rotate operation of the A/C units to promote equal run times.

<table>
<thead>
<tr>
<th>Display description</th>
<th>Description</th>
<th>Variables</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force Rotation</td>
<td>This field only appears on the Lead controller. If you select “On” and press (→) it initiates a manual rotation cycle to rotate duty between active and standby units. It also rotates the role of Lead controller. The field will disappear after the role of Lead is rotated to the next A/C unit.</td>
<td>0= Off 1= On</td>
<td>0</td>
</tr>
<tr>
<td>Number of Days</td>
<td>Enter the number of days between rotating active units.</td>
<td>0 to 999</td>
<td>0</td>
</tr>
<tr>
<td>Hour of Day</td>
<td>Enter the hour of day for unit rotation to occur.</td>
<td>0 to 23</td>
<td>0</td>
</tr>
<tr>
<td>Cur Lead</td>
<td>Identifies which A/C unit controller is currently the lead unit in the group.</td>
<td>1 to 8</td>
<td>0</td>
</tr>
<tr>
<td>Next lead</td>
<td>Identifies which A/C unit controller is designated to be the next lead unit.</td>
<td>1 to 8</td>
<td>0</td>
</tr>
<tr>
<td>Rot Unit</td>
<td>Identifies which A/C unit is designated to be the next unit to rotate duty.</td>
<td>1 to 8</td>
<td>0</td>
</tr>
<tr>
<td>Value</td>
<td>Identifies the duty of the A/C unit by displaying the variable number assigned in Factory>Group screen 1 (0=Out of Service, 1=Active, 2=Standby, etc.).</td>
<td>0 to 6</td>
<td>0</td>
</tr>
</tbody>
</table>
Factory>Group> Capacity Assist (Screen 3)

Each A/C unit in the group may be assigned local cut-in and cut-out setpoints for it's capacity assist operation. The values entered are offsets which are applied to the control setpoints established at the lead controller. Each unit in the group should be assigned incrementally increasing/decreasing offsets for cooling humidifying and dehumidifying so they will turn on one at a time only if the unit(s) currently operating are unable to satisfy the demand.

<table>
<thead>
<tr>
<th>Display description</th>
<th>Description</th>
<th>Variables</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assist Time</td>
<td>Enter the delay period for capacity assist unit(s) to begin operating.</td>
<td>0 to 999</td>
<td>300</td>
</tr>
<tr>
<td>Cooling Cut in</td>
<td>Enter a temperature setpoint offset for cooling capacity assist operation to begin.</td>
<td>-99.9 to 99.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Cut out</td>
<td>Enter a temperature setpoint offset for cooling capacity assist operation to stop.</td>
<td>-99.9 to 99.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Factory>Group>Capacity Assist (Screen 4)

<table>
<thead>
<tr>
<th>Display description</th>
<th>Description</th>
<th>Variables</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humid Cut in</td>
<td>Enter relative humidity setpoint offset for humidifying capacity assist operation to begin</td>
<td>-99.9 to 99.9</td>
<td>-4.0</td>
</tr>
<tr>
<td>Cut out</td>
<td>Enter relative humidity setpoint offset for humidifying capacity assist operation to stop</td>
<td>-99.9 to 99.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Dehum Cut in</td>
<td>Enter relative humidity setpoint offset for dehumidifying capacity assist operation to begin</td>
<td>-99.9 to 99.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Cut out</td>
<td>Enter relative humidity setpoint offset for dehumidifying capacity assist operation to stop</td>
<td>-99.9 to 99.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Group Averaging

Use unit sensors when in Standby or Assist for Group Averaging
Temp/Hum Sensors Yes
Static Pr Sensors Yes

Display description	Description	Variables	Default
Temp/Hum Sensors | Enter Yes for the unit to respond to it's local sensors to enable Standby or Capacity Assist operation. Enter No for unit to respond to the Group sensors. | 0 = No 1= Yes | Yes
Static Pr Sensors | | 0 = No 1= Yes | Yes

Group Alarm Setup

1-8: 000 9-16: 000 17-24: 000 25-32: 000 33-40: 000

This screen may be accessed on the controller for each unit to be grouped. You may enter bitmask numbers to establish which alarm conditions for that particular unit will initiate a group internal alarm. The group alarms may be set before the A/C units are wired together. When a group alarm condition is detected by a unit it causes that unit to temporarily switch over from "Active" to "Off" and if another unit is available in the group, it may rotate into its place. A status massage "Off by internal alarm" will appear in the Main screen of the unit that detected the group alarm and switched off.

See Section 4.5.5.6.6 for an overview of how to select alarms using bitmask values. The Group Alarms bitmask values are shown in the following tables. The settings may be viewed at the Info level following the network sensors screen. If an alarm condition appearing in the following tables is detected, it needs to be reset at the unit's display terminal or via the BMS for the unit to return to “Active” and resume operation.

Group Alarms 1 to 8

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Humidifier</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Pump</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Customer alarm 1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Circuit 1 high pressure</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Circuit 1 low pressure</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>DX lockout</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Humidifier lockout</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>FC/AWS lockout</td>
<td>128</td>
<td>0</td>
</tr>
</tbody>
</table>

Group Alarms 9 to 16

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Upper fan alarm</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Middle fan alarm</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Lower fan alarm</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Water detection</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Condensate pan</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Moisture</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Filter</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Reserved</td>
<td>128</td>
<td>0</td>
</tr>
</tbody>
</table>
Group Alarms 17 to 24

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>High temperature</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Low temperature</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>High humidity</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Low humidity</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>High water temperature CW1</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>Low water temperature CW1</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Reserved</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>Reserved</td>
<td>128</td>
<td>0</td>
</tr>
</tbody>
</table>

Group Alarms 25 to 32

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Upper temp sensor</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>Middle temp sensor</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>Lower temp sensor</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>Return humidity sensor</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>Optional temperature sensor</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>Circuit 1 discharge pressure</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>Circuit 1 suction pressure</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>Circuit 1 suction temperature</td>
<td>128</td>
<td>0</td>
</tr>
</tbody>
</table>

Group Alarms 33 to 40

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Bit mask</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Static air pressure</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>Differential air pressure</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>Dewpoint</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>Airspeed</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>Reserved</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>Reserved</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>Reserved</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>Reserved</td>
<td>128</td>
<td>0</td>
</tr>
</tbody>
</table>

There are several automatic crossover signals that will cause a switch over from Unit Active to Unit Off. They are the occurrence of a remote shutdown command, unit shutdown from a group alarm or BMS command, fire/smoke detection, loss of all cooling (all compressors or all CW valves) or loss of airflow.

The next screen, Factory>Group Screen 7, provides an overview of pLAN work group.

<table>
<thead>
<tr>
<th>Display description</th>
<th>Description</th>
<th>Variables</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Status</td>
<td>Indicates if multiple A/C unit grouping is enabled.</td>
<td>0= On</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1= Off</td>
<td></td>
</tr>
<tr>
<td>C 1 2 3 4 5 6 7 8</td>
<td>Indicates the address (1-8) of each controller in the pLAN.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>T 5 6 7 8 9 0 1 2</td>
<td>Indicates the address (25-32) of the terminal for each controller in the pLAN. The terminal address numbers range from 25 to 32 but only the last digit appears in the screen.</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>
Factory>Group>Group Status (Screen 8)

This screen provides an overview of the current duty status for all the A/C units combined in the group.

<table>
<thead>
<tr>
<th>Display description</th>
<th>Description</th>
<th>Variables</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running</td>
<td>Display indicates how many units in the group are currently operating.</td>
<td>0 to 8</td>
<td>0</td>
</tr>
<tr>
<td>Active</td>
<td>Display indicates how many units in the group are currently active.</td>
<td>0 to 8</td>
<td>0</td>
</tr>
<tr>
<td>Standby</td>
<td>Display indicates how many units in the group are currently in standby.</td>
<td>0 to 8</td>
<td>0</td>
</tr>
<tr>
<td>Assist</td>
<td>Display indicates how many units in the group are currently operating in the capacity assist mode.</td>
<td>0 to 8</td>
<td>0</td>
</tr>
<tr>
<td>Online</td>
<td>Display indicates how many units in the group are currently available to operate.</td>
<td>0 to 8</td>
<td>0</td>
</tr>
<tr>
<td>Out of Service</td>
<td>Display indicates how many units in the group are not available to operate.</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

The final step to configure a work group is to access the Service>Options>Group Setup screens used to configure parameters that apply to how individual A/C units interact in the work group (see Section 4.6.2.7).

Factory>Group>Plan timing (Screen 9)

<table>
<thead>
<tr>
<th>Display description</th>
<th>Description</th>
<th>Variables</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead unit</td>
<td>Display indicates which unit is currently the lead.</td>
<td>0 to 8</td>
<td>0</td>
</tr>
<tr>
<td>Plan timer</td>
<td>Display indicates the time delay (in seconds) between the detection of a communication failure and the annunciation of a Comm alarm.</td>
<td>0 to 60</td>
<td>30</td>
</tr>
<tr>
<td>Plan present</td>
<td>Display indicates if a pLAN is detected by the controller.</td>
<td>0= No, 1= Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
4.6.2.7 Service>Options>Group Menu Screens

Accessed in the Service menu, the Service>Options>Group Setup screens only appear if two or more units are wired together as a work group.

4.6.2.7.1 Group Setup

The Service>Options>Group Setup screen allows you to select the work group duty assignment for the A/C unit. The duty must be assigned for each grouped A/C unit at its local display terminal.

Enter the number of days between rotating active units. Enter the hour of day for unit rotation to occur.

The screen also displays a status message indicating which A/C unit you are accessing and which unit is currently the lead unit in the group.

4.6.2.7.2 Capacity Assist

The first Service>Options>Capacity Assist screen allows you to enter the delay period for the unit to begin operating if it is in the capacity assist mode. Also, each A/C unit in the group may be assigned local cut-in and cut-out setpoints for it's capacity assist operation. The values entered are offsets which are applied to the control setpoints.

Each unit in the group should be assigned incrementally increasing/decreasing offsets for cooling, humidifying and dehumidifying so they will turn on one at a time only if the unit(s) currently operating are unable to satisfy the demand.

4.6.2.7.3 Capacity Assist #2

The second Service>Options>Capacity Assist screen allows you to adjust local capacity assist humidification and dehumidification setpoints.

4.6.2.7.4 Group Sensors

The lead controller polls the controllers from all the A/C units in the work group and calculates the averaged value of their temperature sensors and humidity sensors. It also determines the minimum (lowest) temperature sensor value and the lowest humidity sensor value in the A/C group and conversely, determines the maximum (highest) temperature sensor value and maximum humidity sensor value in the A/C group.

The Service>Options>Group Sensors screen allows you to select whether to control the A/C work group using the T/H sensors connected to individual A/C units (Local) or control the work group using network sensor values transmitted from the lead controller. You may select the network sensor values to be the Lead, Average, Min or Max values. The selections made in this screen will affect all the controllers in the work group no matter which controller you access the screen from.

4.6.2.7.5 Group Averaging

Each unit in the group may be individually set to allow the lead controller to include it's sensors for determining the group average value when it is configured for Standby or Capacity Assist operation. If set to no, the lead controller will not poll that unit's sensors when calculating the averaged values.
4.6.2.8 Information Menu Group Menu Screens

The following display screens are available in the Information menu loop (Section 4.5.2.8) if two or more units are wired together as a group. They display key operating parameters for grouped A/C units.

4.6.2.8.1 Group Sensor Values

This displays the current group temperature and humidity control values transmitted from the Lead controller. The field below displays the selected control T/H sensor arrangement (lead, avg, min, max, local) depending upon how the group is set up. See Service>Options screens, Section 4.6.2.7. The last field shows the unit group address assigned to the controller within the group and the address of the current lead controller.

4.6.2.8.2 Group Alarms

This screen only appears when the controller is wired with additional A/C unit controllers. It displays bitmask values indicating the alarm conditions that will initiate a group internal alarm causing the unit to switch over from "Active" to "Unit Off". See Factory>Group (Group Alarm Set up) in Section 4.6.2.6.

4.6.2.8.3 Lead Controller Group Sensors

This screen appears only in the display of the controller that is designated as the Lead in a multi-unit work group. The lead controller polls the Temperature and Humidity sensors from all the A/C units in the work group and displays the averaged values. It also displays the value of the minimum (lowest) temperature sensor and the value of the minimum humidity sensor in the A/C group and conversely, displays the value of the maximum (highest) temperature sensor and maximum humidity sensor in the A/C group. The fields at the bottom are the addresses of the controllers in the group that have the min. (lowest) and max. (highest) temperature and humidity sensor readings.

4.6.2.8.4 Group Sensor Status

This screen appears only in the display of the controller that is designated as the Lead in a multi-unit work group. It shows what sensors exist on each A/C unit for the Lead controller to perform the group sensor averaging calculation. The numbers are the sums of index values assigned to the sensors as shown in the following key:

- 1 = Supply Temperature Sensor
- 2 = Return Humidity Sensor
- 4 = Remote Supply Temperature Sensor
- 8 = Remote Supply Humidity Sensor
- 16 = Static Pressure Sensor

To determine which sensors are enabled and operable for each unit, simply determine which index numbers, derived from the key above, will produce the number shown in the screen.

In the example shown, the number for the lead unit is 15. This results from adding 1 Supply Temperature + 2 Return Humidity + 4 Remote Supply Temperature + 8 Remote Supply Humidity together, confirming those sensors are operable.

The number shown for unit number 2 is three, the result of adding 1 + 2. This confirms unit number 2's Supply Temperature and Return Humidity sensors are detected by the Lead controller. If a one appeared instead for unit number 2, it would indicate the signal for the Return Humidity sensor is not present. That sensor is either not enabled or it has failed.
4.7 BMS Communication

When BMS communication is utilized, the controller must be equipped with an optional expansion card designed for one of a variety of serial communication protocols available (see Section 4.1.4). A communication port on the expansion card allows the controller to be field connected to a central Building Management System (BMS) for monitoring and control of data points.

A RS-485 serial port is available for Modbus or BACnet MS/TP protocols and a 10BaseT port is available for TCP/IP based protocols such as BACnet over IP, BACnet over Ethernet, SNMP or HTTP.

Supported Protocols

<table>
<thead>
<tr>
<th>Supported Protocols</th>
<th>Media</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet over IP</td>
<td>10BaseT</td>
<td>RJ45 direct</td>
</tr>
<tr>
<td>BACnet over Ethernet</td>
<td>10BaseT</td>
<td>RJ45 direct</td>
</tr>
<tr>
<td>HTTP</td>
<td>10BaseT</td>
<td>RJ45 direct</td>
</tr>
<tr>
<td>SNMP V1, V2c</td>
<td>10BaseT</td>
<td>RJ45 direct</td>
</tr>
<tr>
<td>Modbus over IP</td>
<td>10BaseT</td>
<td>RJ45 direct</td>
</tr>
<tr>
<td>BACnet MS/TP</td>
<td>twisted pair</td>
<td>daisy chain</td>
</tr>
<tr>
<td>Modbus RTU</td>
<td>twisted pair</td>
<td>daisy chain</td>
</tr>
</tbody>
</table>

Direct Connection

- BMS
 - Unit 1
 - Unit 2
 - Unit 3

Daisy Chain Connection

- BMS
 - Unit 1
 - Unit 2
 - Unit 3

If multiple A/C units are grouped together, each controller added to the group must be configured with a CPU address for BMS communication.

For complete details on utilizing BMS control, contact STULZ Product Support (see Section 6.0).

4.7.1 Direct BMS Control

The controller may be configured to accept proportional analog signals that mimics a sensor. The controller will act on that signal whether it comes from a real sensor or a BMS analog output.

Refer to Section 4.9 for the E^2 controller's BMS parameters.

4.7.2 BMS Communication

The Service>BMS Comm menu is used to set up the parameters to allow a BMS (BAS) interface for monitoring controller operation for the serial-based networks such as BACnet MS/TP. Units using the BACnet over IP, BACnet over Ethernet, or HTTP protocols do not need to change anything in this menu loop.

BMS Communications

- **Address:** 1
- **Baud Rate:** 19200
- **Protocol:** BACnet
- **BMS keep alive:** 1

The BMS address and baud rate have meaning only on RS-485 networks and with the serial protocols of Modem, Modbus RTU, Commission, and Carel. The baud rate is fixed for BACnet. Systems utilizing a 10BaseT interface should use the defaults of address 1, baud rate 19200, and protocol BACnet.

Certain Integer and Digital variables that start with BMS (see page 4-49) require that the BMS "keep alive" parameter changes between 1 and 2 within a 10 minute span. The general procedure is to set up variables like the BMS low fan speed and then write a 1 to the BMS "keep alive" address.
4.8 Troubleshooting the Control I/O Module Signal LED's

The E^2 control I/O module includes 3 signal LED's (red, yellow and green) that provide information on the operation of the control module and status of the connection to the pLAN. These signal LED's are positioned adjacent to the yellow, "Power On" LED (see Figure 11). The signal LED's may be used for diagnostic purposes if a problem arises with the controller.

Key:
- **LED off**
- **LED on**
- **LED flashing**

<table>
<thead>
<tr>
<th>RED LED</th>
<th>YELLOW LED</th>
<th>GREEN LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
<td>○</td>
<td>Application with error or no pLAN table.</td>
</tr>
<tr>
<td>○</td>
<td>○</td>
<td>○</td>
<td>Application with error or no pLAN table. Controller connected to ONLY one terminal.</td>
</tr>
<tr>
<td>□</td>
<td>○</td>
<td>○</td>
<td>Application with correct pLAN table.</td>
</tr>
<tr>
<td>□</td>
<td>○</td>
<td>○</td>
<td>Correct operation in pLAN.</td>
</tr>
<tr>
<td>□</td>
<td>◯</td>
<td>□</td>
<td>Awaiting communication with WinLoad (factory configuration software). Check address.</td>
</tr>
<tr>
<td>□</td>
<td>◯</td>
<td>◯</td>
<td>(LED flashing alternately) Communication with WinLoad not valid. No power supply or wrong driver.</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>◯</td>
<td>Communicating with WinLoad (in low level operation).</td>
</tr>
<tr>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>Communication with WinLoad on hold.</td>
</tr>
<tr>
<td>◯</td>
<td>◯</td>
<td>◯</td>
<td>WinLoad not suitable or incorrect software protection password.</td>
</tr>
<tr>
<td>◯</td>
<td>○</td>
<td>◯</td>
<td>Communicating with WinLoad (in normal operation).</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>Controller supervisor protocol (slave) active on serial 0.</td>
</tr>
</tbody>
</table>
4.9 Supported Protocols

<table>
<thead>
<tr>
<th>Supported Protocols</th>
<th>Speed</th>
<th>Media</th>
<th>Connection</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACnet over IP</td>
<td>10 Mbps</td>
<td>10BaseT</td>
<td>RJ45 direct unit connection</td>
<td>Uses BMS addresses</td>
</tr>
<tr>
<td>BACnet over Ethernet</td>
<td>10 Mbps</td>
<td>10BaseT</td>
<td>RJ45 direct unit connection</td>
<td>Uses BMS addresses</td>
</tr>
<tr>
<td>HTTP</td>
<td>10 Mbps</td>
<td>10BaseT</td>
<td>RJ45 direct unit connection</td>
<td>Uses BMS addresses</td>
</tr>
<tr>
<td>SNMP V1, V2c</td>
<td>10 Mbps</td>
<td>10BaseT</td>
<td>RJ45 direct unit connection</td>
<td>Uses BMS addresses</td>
</tr>
<tr>
<td>Modbus over IP</td>
<td>10 Mbps</td>
<td>10BaseT</td>
<td>RJ45 direct unit connection</td>
<td>Uses Modbus addresses</td>
</tr>
<tr>
<td>BACnet MS/TP</td>
<td>19200 baud</td>
<td>Twisted pair</td>
<td>Daisy chain connection</td>
<td>Uses BMS addresses</td>
</tr>
<tr>
<td>Modbus RTU</td>
<td>19200 baud</td>
<td>Twisted pair</td>
<td>Daisy chain connection</td>
<td>Uses Modbus addresses</td>
</tr>
</tbody>
</table>

4.9.1 Signed Values for HTTP, SNMP / Modbus Holding Registers / Analog Values for BACnet

<table>
<thead>
<tr>
<th>BMS Address</th>
<th>Modbus Address</th>
<th>BACnet Address</th>
<th>Description</th>
<th>Default</th>
<th>Read/Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>002</td>
<td>1</td>
<td>Temperature setpoint</td>
<td>72.0</td>
<td>R/W</td>
</tr>
<tr>
<td>2</td>
<td>003</td>
<td>2</td>
<td>Humidity setpoint</td>
<td>45.0</td>
<td>R/W</td>
</tr>
<tr>
<td>3</td>
<td>004</td>
<td>3</td>
<td>Average supply temperature display value</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>005</td>
<td>4</td>
<td>Return humidity sensor current value</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>006</td>
<td>5</td>
<td>Dewpoint of return temp and humidity</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>007</td>
<td>6</td>
<td>Dewpoint of remote temp and humidity</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>008</td>
<td>7</td>
<td>Middle fan speed</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>009</td>
<td>8</td>
<td>Upper fan speed</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>010</td>
<td>9</td>
<td>Lower fan speed</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>011</td>
<td>10</td>
<td>Middle fan manual speed</td>
<td>0.0</td>
<td>R/W</td>
</tr>
<tr>
<td>11</td>
<td>012</td>
<td>11</td>
<td>Upper fan manual speed</td>
<td>0.0</td>
<td>R/W</td>
</tr>
<tr>
<td>12</td>
<td>013</td>
<td>12</td>
<td>Lower fan manual speed</td>
<td>0.0</td>
<td>R/W</td>
</tr>
<tr>
<td>13</td>
<td>014</td>
<td>13</td>
<td>Static pressure sensor current value</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>14</td>
<td>015</td>
<td>14</td>
<td>C1 discharge pressure sensor current value</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>15</td>
<td>016</td>
<td>15</td>
<td>C1 suction pressure sensor current value</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>16</td>
<td>017</td>
<td>16</td>
<td>C1 suction temperature sensor current value</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>17</td>
<td>018</td>
<td>17</td>
<td>Return temperature display value</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>18</td>
<td>019</td>
<td>18</td>
<td>Remote temperature display value</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>19</td>
<td>020</td>
<td>19</td>
<td>Entering water temperature display value</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>20</td>
<td>021</td>
<td>20</td>
<td>Leaving water temperature display value</td>
<td>0.0</td>
<td>R</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>100</td>
<td>High air temperature alarm limit</td>
<td>80.0</td>
<td>R/W</td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>101</td>
<td>Low temperature alarm limit</td>
<td>60.0</td>
<td>R/W</td>
</tr>
<tr>
<td>102</td>
<td>103</td>
<td>102</td>
<td>High humidity alarm limit</td>
<td>70.0</td>
<td>R/W</td>
</tr>
<tr>
<td>103</td>
<td>104</td>
<td>103</td>
<td>Low humidity alarm limit</td>
<td>30.0</td>
<td>R/W</td>
</tr>
<tr>
<td>104</td>
<td>105</td>
<td>104</td>
<td>High water temperature limit</td>
<td>60.0</td>
<td>R/W</td>
</tr>
<tr>
<td>105</td>
<td>106</td>
<td>105</td>
<td>Low water temperature alarm limit</td>
<td>40.0</td>
<td>R/W</td>
</tr>
</tbody>
</table>
4.9.2 Unsigned Values for HTTP, SNMP / Modbus Holding Registers / Analog Values for BACnet

<table>
<thead>
<tr>
<th>BMS Address</th>
<th>Modbus Address</th>
<th>BACnet Address</th>
<th>Description</th>
<th>Default</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130</td>
<td>1001</td>
<td>Cooling analog output</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>131</td>
<td>1002</td>
<td>Middle Fan Speed analog output</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>132</td>
<td>1003</td>
<td>Upper fan analog control value</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>133</td>
<td>1004</td>
<td>Lower Fan analog control value</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>134</td>
<td>1005</td>
<td>Packed bit for BMS - alarms</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>135</td>
<td>1006</td>
<td>Packed bit for BMS - alarms</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>136</td>
<td>1007</td>
<td>Packed bit for BMS - alarms</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>8</td>
<td>137</td>
<td>1008</td>
<td>Packed bit for BMS - sensor fails</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>138</td>
<td>1009</td>
<td>Packed bit for BMS - sensor fails</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>10</td>
<td>139</td>
<td>1010</td>
<td>Packed bit for BMS - digital inputs</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>11</td>
<td>140</td>
<td>1011</td>
<td>Packed bit for BMS - digital inputs</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>12</td>
<td>141</td>
<td>1012</td>
<td>Packed bit for BMS - digital outputs</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>13</td>
<td>142</td>
<td>1013</td>
<td>Packed bit for BMS - digital outputs</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>15</td>
<td>144</td>
<td>1015</td>
<td>Prop humidifier control output</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>16</td>
<td>145</td>
<td>1016</td>
<td>Head pressure control output</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>100</td>
<td>229</td>
<td>1100</td>
<td>BMS keep alive parameter</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>101</td>
<td>230</td>
<td>1101</td>
<td>BMS low fan speed for CW units</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>102</td>
<td>231</td>
<td>1102</td>
<td>BMS run fan speed for CW units</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>103</td>
<td>232</td>
<td>1103</td>
<td>BMS dehum fan speed for CW units</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>104</td>
<td>233</td>
<td>1104</td>
<td>Fan link control (0 to 4)</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>105</td>
<td>234</td>
<td>1105</td>
<td>Control mode of dewpoint, hybrid, standard</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>106</td>
<td>235</td>
<td>1106</td>
<td>Temperature control sensor selection</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>107</td>
<td>236</td>
<td>1107</td>
<td>Humidity control sensor selection</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>108</td>
<td>237</td>
<td>1108</td>
<td>Type of unit (valid numbers 0 to 6)</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>110</td>
<td>239</td>
<td>1110</td>
<td>Lower fan speed control (0 to 2)</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>111</td>
<td>240</td>
<td>1111</td>
<td>Middle fan speed control (0 to 2)</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>112</td>
<td>241</td>
<td>1112</td>
<td>Upper fan speed control (0 to 2)</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>123</td>
<td>252</td>
<td>1123</td>
<td>Current day</td>
<td>1</td>
<td>R/W</td>
</tr>
<tr>
<td>124</td>
<td>253</td>
<td>1124</td>
<td>Current month</td>
<td>1</td>
<td>R/W</td>
</tr>
<tr>
<td>125</td>
<td>254</td>
<td>1125</td>
<td>Current year</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>126</td>
<td>255</td>
<td>1126</td>
<td>Current hour</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>127</td>
<td>256</td>
<td>1127</td>
<td>Current minute</td>
<td>0</td>
<td>R/W</td>
</tr>
</tbody>
</table>

4.9.2.1 Variable/Value Descriptions

<table>
<thead>
<tr>
<th>Variable Description</th>
<th>Description for Value 0</th>
<th>Description for Value 1</th>
<th>Description for Value 2</th>
<th>Description for Value 3</th>
<th>Description for Value 4</th>
<th>Description for Value 5</th>
<th>Description for Value 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan link control</td>
<td>None</td>
<td>Upper & Middle</td>
<td>Upper & Lower</td>
<td>Middle & Lower</td>
<td>All</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[X] fan speed control</td>
<td>Manual</td>
<td>Temperature Proportionate</td>
<td>Variance from Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of unit</td>
<td>Not Selected</td>
<td>CW-12"</td>
<td>CW-24"</td>
<td>AR-12"</td>
<td>AR-24"</td>
<td>W/G-12"</td>
<td>W/G-24"</td>
</tr>
</tbody>
</table>
4.9.3 Boolean Values for HTTP, SNMP / Modbus Coils / Binary Values for BACnet

<table>
<thead>
<tr>
<th>BMS Address</th>
<th>Modbus Address</th>
<th>BACnet Address</th>
<th>Description</th>
<th>Default</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>002</td>
<td>1</td>
<td>Global alarm output</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>2</td>
<td>003</td>
<td>2</td>
<td>System on status</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>004</td>
<td>3</td>
<td>Airflow has been proven</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>005</td>
<td>4</td>
<td>Call for cooling</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>006</td>
<td>5</td>
<td>Call for humidification</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>007</td>
<td>6</td>
<td>Call for dehumidification</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>100</td>
<td>BMS value to pause the unit</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>101</td>
<td>BMS value to reset alarms</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>102</td>
<td>103</td>
<td>102</td>
<td>Force rotation of units in group manual or BMS</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>103</td>
<td>104</td>
<td>103</td>
<td>BMS value to switch CW sources</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>104</td>
<td>105</td>
<td>104</td>
<td>BMS value to switch dual power primary</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>105</td>
<td>106</td>
<td>105</td>
<td>BMS value to activate lockout function</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>106</td>
<td>107</td>
<td>106</td>
<td>Reset dirty filter alarm</td>
<td>0</td>
<td>R/W</td>
</tr>
</tbody>
</table>

4.9.4 Alarm Packed Bit Variables

<table>
<thead>
<tr>
<th>Bit</th>
<th>Alarms 1</th>
<th>Alarms 2</th>
<th>Alarms 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Emergency shutdown</td>
<td>Middle fan alarm</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Remote shutdown</td>
<td>Upper fan alarm</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>Customer Alarm 1</td>
<td>Lower fan alarm</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Airflow</td>
<td>High temperature</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>Filter</td>
<td>Low temperature</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Fire/Smoke</td>
<td>High humidity</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>Water detection</td>
<td>Low humidity</td>
<td>Reserved</td>
</tr>
<tr>
<td>7</td>
<td>Condensate pan</td>
<td>High water temp CW1</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>Moisture</td>
<td>Low water temp CW1</td>
<td>Reserved</td>
</tr>
<tr>
<td>9</td>
<td>Circuit 1 low pressure</td>
<td>Customer Alarm 2</td>
<td>Reserved</td>
</tr>
<tr>
<td>10</td>
<td>Circuit 1 high pressure</td>
<td>Customer Alarm 3</td>
<td>Reserved</td>
</tr>
<tr>
<td>11</td>
<td>Pump</td>
<td>Flow alarm (temp sensors)</td>
<td>Reserved</td>
</tr>
<tr>
<td>12</td>
<td>Dual power input A</td>
<td>Flow alarm (flow switch)</td>
<td>Reserved</td>
</tr>
<tr>
<td>13</td>
<td>Dual power input B</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>14</td>
<td>Humidifier</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>15</td>
<td>Loss of power</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
4.9.5 Sensor Failure Packed Bit Variables

<table>
<thead>
<tr>
<th>Bit</th>
<th>Sensor Failures 1</th>
<th>Sensor Failures 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Middle temperature</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Upper temperature</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>Lower temperature</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Return temperature</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>Return humidity</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Static air pressure</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>Suction pressure</td>
<td>Reserved</td>
</tr>
<tr>
<td>7</td>
<td>Suction temperature</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>Discharge pressure</td>
<td>Reserved</td>
</tr>
<tr>
<td>9</td>
<td>Discharge temperature</td>
<td>Reserved</td>
</tr>
<tr>
<td>10</td>
<td>Remote temperature</td>
<td>Reserved</td>
</tr>
<tr>
<td>11</td>
<td>Remote humidity</td>
<td>Reserved</td>
</tr>
<tr>
<td>12</td>
<td>Entering water temperature</td>
<td>Reserved</td>
</tr>
<tr>
<td>13</td>
<td>Leaving water temperature</td>
<td>Reserved</td>
</tr>
<tr>
<td>14</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>15</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

4.9.6 Digital Input Packed Bit Variables

<table>
<thead>
<tr>
<th>Bit</th>
<th>Digital Inputs 1</th>
<th>Digital Inputs 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Remote shutdown</td>
<td>Customer alarm 2</td>
</tr>
<tr>
<td>1</td>
<td>Customer alarm 1</td>
<td>Customer alarm 3</td>
</tr>
<tr>
<td>2</td>
<td>Water</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Condensate pan</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>Humidifier</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Moisture</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>Middle fan alarm</td>
<td>Reserved</td>
</tr>
<tr>
<td>7</td>
<td>Upper fan alarm</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>Fire/smoke</td>
<td>Reserved</td>
</tr>
<tr>
<td>9</td>
<td>Lower fan alarm</td>
<td>Reserved</td>
</tr>
<tr>
<td>10</td>
<td>Dual power input A</td>
<td>Reserved</td>
</tr>
<tr>
<td>11</td>
<td>Dual power input B</td>
<td>Reserved</td>
</tr>
<tr>
<td>12</td>
<td>Circuit 1 low pressure</td>
<td>Reserved</td>
</tr>
<tr>
<td>13</td>
<td>Circuit 1 high pressure</td>
<td>Reserved</td>
</tr>
<tr>
<td>14</td>
<td>Pump alarm</td>
<td>Reserved</td>
</tr>
<tr>
<td>15</td>
<td>Humidifier lockout</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
4.9.7 Digital Output Packed Bit Variables

<table>
<thead>
<tr>
<th>Bit</th>
<th>Digital Outputs 1</th>
<th>Digital Outputs 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Global alarm</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Custom alarm 1</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>Master fan enable</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>DX1 enable</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>DX1 liquid line solenoid</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Humidifier enable</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>Dual power output A</td>
<td>Reserved</td>
</tr>
<tr>
<td>7</td>
<td>Dual power output B</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>Pump enable</td>
<td>Reserved</td>
</tr>
<tr>
<td>9</td>
<td>Custom alarm 2</td>
<td>Reserved</td>
</tr>
<tr>
<td>10</td>
<td>Custom alarm 3</td>
<td>Reserved</td>
</tr>
<tr>
<td>11</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>12</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>13</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>14</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>15</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

The R/W BMS variables fall into two categories. Variables like the temperature setpoint are permanent. As permanent variables, they retain their value regardless of power loss or BMS communication failure. The controller's flash memory is limited to one million write cycles for permanent variables. The other category is the integer and digital variables that start with "BMS". These are expected to be changed frequently and require that the BMS is active when changing them. All BMS variables require that the BMS "keep alive" parameter (Variable 100) changes between 1 and 2 within a 10 minute span. The general procedure is to set up variables like the BMS low fan speed and then write a 1 to the BMS "keep alive" address. If the controller does not see a 2 written to the BMS "keep alive" address within 10 minutes, all the BMS variables will revert to their previous values.

4.9.8 Unsigned Values for HTTP, SNMP / Modbus Holding Registers / Analog Values for BACnet

<table>
<thead>
<tr>
<th>BMS Address</th>
<th>Modbus Address</th>
<th>BACnet Address</th>
<th>Description</th>
<th>Default</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>229</td>
<td>1100</td>
<td>BMS keep alive parameter</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>101</td>
<td>230</td>
<td>1101</td>
<td>BMS low fan speed for CW units</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>102</td>
<td>231</td>
<td>1102</td>
<td>BMS run fan speed for CW units</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>103</td>
<td>232</td>
<td>1103</td>
<td>BMS dehum fan speed for CW units</td>
<td>0</td>
<td>R/W</td>
</tr>
</tbody>
</table>

4.9.9 Boolean Values for HTTP, SNMP / Modbus Coils / Binary Values for BACnet

<table>
<thead>
<tr>
<th>BMS Address</th>
<th>Modbus Address</th>
<th>BACnet Address</th>
<th>Description</th>
<th>Default</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>101</td>
<td>1100</td>
<td>BMS value to pause the unit</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>1101</td>
<td>BMS value to reset alarms</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>102</td>
<td>103</td>
<td>1102</td>
<td>Force rotation of units in group manual or BMS</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>103</td>
<td>104</td>
<td>1103</td>
<td>BMS value to switch CW sources</td>
<td>0</td>
<td>R/W</td>
</tr>
<tr>
<td>104</td>
<td>105</td>
<td>1104</td>
<td>BMS value to switch dual power primary</td>
<td>0</td>
<td>R/W</td>
</tr>
</tbody>
</table>
5.0 MAINTENANCE

5.1 Periodic General Maintenance

Systematic, periodic general maintenance of the CyberRow unit is required for optimum system performance. General maintenance should include, but is not limited to the following: replacing filters, tightening electrical connections, checking the condensate pans and drain line to ensure they are free of debris, cleaning the interior of the unit, inspecting the units’ components visually, checking level of refrigerant and ensuring no moisture is in the refrigerant IF APPLICABLE.

Use copies of the Periodic General Maintenance Checklist in this manual (see Appendix A) to record periodic general maintenance inspections. For assistance, contact STULZ Product Support. Ensure adherence to all safety statements while performing any type of maintenance.

WARNING

This equipment should be serviced and repaired by a journeyman or a qualified refrigeration technician only.

WARNING

This unit employs high voltage equipment with rotating components. Exercise extreme care to avoid accidents and ensure proper operation.

Hazardous voltage will still be present inside the electric box at the motor start protectors and circuit breakers, even with the unit turned off at the microprocessor controller. To isolate the unit for maintenance, turn off power at the main power disconnect switch. Always disconnect main power prior to performing any service or repairs.

WARNING

Turn off power to the unit unless you are performing tests that require power. With power and controls energized, the unit could begin operating automatically at any time. To prevent personal injury, stay clear of rotating components as automatic controls may start them unexpectedly.

5.1.1 Filters

The filter is usually the most neglected item in an air conditioning system. To maintain efficient operation, the filter should be checked every 3 to 6 months and cleaned or replaced as required.

NOTE

Conditions of spaces vary. Extremely dusty environments may require more frequent filter maintenance.

The air filters are located behind the air intake grille at the rear of the cabinet. To access the filters, unlatch the rear access panel at the top and remove it from the cabinet.

5.1.1.1 Cleanable Filters

Cleanable filters are spring loaded in the holding trays in the access panel. Using a flat head screwdriver, gently push the filters to one side and remove the old filters from the trays (Figure 19).

Figure 19- Cleanable Filters

Clean the filter media using a vacuum cleaner, low pressure compressed air or rinse with water. A mild detergent such as dish washing liquid may be used. DO not use solvents or cleaning agents. Replace the filters every 2 to 3 years when they become too flimsy.
5.1.1.2 Cartridge Filters
Replaceable cartridge filters are held in place by an end cap in the bottom of the rear access panel. Lay the access panel down on a piece of cardboard and remove the four screws holding the end cap in place. Remove the end cap and slide the old filters out of the tray as shown in Figure 20. Slide the new filters into the tray and replace the end cap. Ensure the four screws are fully tightened.

5.1.2 EC Fans
Periodic checks of the EC fans should include checking the wiring, fan motor mounts, housing and impeller wheel. Ensure all electrical connections are tight. Check that all mounting fasteners are secure and the impeller wheel is tightly mounted. The impeller blades must be kept free of debris.

5.1.3 Coil
The coil should be inspected semi-annually and cleaned as required, following standard coil cleaning practices. Using a brush, clean the coil fins of all debris that will inhibit airflow. This can also be done with compressed air or with a commercial coil cleaner. Check for bent or damaged coil fins and repair as necessary. Check all refrigerant lines and capillaries for vibration isolation and support as necessary. Check all piping for signs of leaks.

5.1.4 Drain Pans
To ensure proper drainage, inspect the drain pans regularly. Make sure the drain pan outlets are always free of debris so they empty readily and ensure the drain pans do not leak.

WARNING
Do not use chloride based water conditioning additives in the condensate drain pans. This will cause corrosion to occur on the coil fins.

5.1.5 Condensate Pump
The condensate pump should be inspected semi-annually and cleaned. It will be necessary to remove the pump as described in Section 5.3.4.2.
Inspect the water level switch and ensure that the float works freely. Wipe the float with a wet cloth and detergent to remove dirt. Check that the discharge line is open and water can pass through it freely.

5.1.6 A/C System
Check the refrigerant sight glass on a monthly basis while the unit is running and ensure it is free of bubbles. Bubbles in the sight glass indicate a low refrigerant charge or a clogged filter-drier. Check for humidity in the refrigerant by viewing the color of the indicator in the center of the sight glass and comparing it to the color scale on the outer ring. If humidity is present, the system must be evacuated and recharged.
Check the superheat and sub-cooling temperatures semi-annually and ensure they are within the range shown in the refrigerant pressure/temperature table in Section 2.10.3. If necessary, adjust the refrigerant charge to achieve the correct values. If the refrigerant level is low, check the system for leaks.
5.2 Troubleshooting

Turn off all power to the unit before conducting any troubleshooting procedures, unless the procedure specifically requires the system to operate. For troubleshooting purposes, the system may be operated with the doors open by using a pair of channel lock pliers to turn the shaft of the main power disconnect switch to the “On” position. When the switch is turned on, high voltage will be present inside the cabinet. Exercise caution to prevent injury. Keep hands, clothing and tools clear of the electrical terminals and rotating components. Ensure that your footing is stable at all times.

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Flow Too Low</td>
<td>Dirty air filters. (Reduced airflow)</td>
<td>Clean/replace filters.</td>
</tr>
<tr>
<td>EC Fan(s) Fail to Start</td>
<td>a. Power failure.</td>
<td>Check main voltage power source input cable.</td>
</tr>
<tr>
<td></td>
<td>c. Control transformer circuit breaker tripped.</td>
<td>Check for short circuit or ground fault; if none reset circuit breaker.</td>
</tr>
<tr>
<td></td>
<td>d. Condensate overflow switch open.</td>
<td>1. Ensure unit is level.</td>
</tr>
<tr>
<td></td>
<td>e. Defective contactor.</td>
<td>2. Check that condensate pan is draining.</td>
</tr>
<tr>
<td></td>
<td>f. No control signal to fan(s).</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>g. EC fan’s internal overheat protection interrupted fan motor operation.</td>
<td>Check the Control I/O Board for a 0-10 VDC control signal to the fan(s). Refer to the electric drawing to determine the correct I/O board terminal numbers. This must be done within 15 seconds of turning the disconnect switch “On” or the controller will go into “Air Proving Alarm” mode. Determine the cause of the interruption and correct. Possible causes are: 1. Blocked rotor. 2. Low supply voltage > 5 seconds. 3. Loss of phase > 5 seconds. After causes 1, 2, and 3 are corrected, the motor will automatically reset. After the causes below are corrected, the fan(s) must be manually reset by turning off power for 20 seconds: 4. Over temperature of electronics. 5. Over temperature of motor.</td>
</tr>
<tr>
<td>Control is Erratic</td>
<td>Wiring improperly connected or broken.</td>
<td>Check wiring against electrical drawing.</td>
</tr>
<tr>
<td>Compressor Fails to Start</td>
<td>a. Temperature setpoint too high.</td>
<td>Adjust to desired temperature.</td>
</tr>
<tr>
<td></td>
<td>b. Compressor internal overload protector is open.</td>
<td>Check compressor for short circuit or ground.</td>
</tr>
<tr>
<td>SYMPTOM</td>
<td>PROBABLE CAUSE</td>
<td>RECOMMENDATION</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>d. Condenser pressure too high (high pressure safety switch tripped).</td>
<td>Check condenser for obstructions.</td>
</tr>
<tr>
<td></td>
<td>e. Minimum off time has not expired.</td>
<td>Wait for time to expire.</td>
</tr>
<tr>
<td>System Short of Capacity</td>
<td>a. Temperature setting too high.</td>
<td>Increase temperature setpoint.</td>
</tr>
<tr>
<td></td>
<td>b. Discharge air short cycling back to return.</td>
<td>Check air barrier between hot/cold aisles.</td>
</tr>
<tr>
<td></td>
<td>c. Low airflow.</td>
<td>1. Check filters. Replace as needed.</td>
</tr>
<tr>
<td></td>
<td>d. Low refrigerant (indicated by bubbles in sight glass).</td>
<td>2. Check for and clear any obstructions across or in the (supply) discharge air stream. Clear coil fins of debris.</td>
</tr>
<tr>
<td></td>
<td>e. Expansion valve stuck or obstructed (short cycling or continuous running).</td>
<td>3. Check evaporator coil for bent fins.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check for leaks Repair and recharge system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remove valve and clear obstruction or replace valve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace with new drier/strainer.</td>
</tr>
<tr>
<td></td>
<td>b. Supply water temperature too high.</td>
<td>2. Check for obstructions in supply/return lines.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Check for clogged strainer (if applicable).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check chilled water supply.</td>
</tr>
<tr>
<td>Water-Water/Glycol Valve Fails to Open or Close</td>
<td>a. Temperature setpoint too high.</td>
<td>Adjust to correct temperature setting.</td>
</tr>
<tr>
<td></td>
<td>b. No control power to the valve.</td>
<td>Valve actuator is wired incorrectly. Check wiring diagram and rewire if required.</td>
</tr>
<tr>
<td></td>
<td>c. Actuator failed.</td>
<td>Replace actuator.</td>
</tr>
<tr>
<td>SYMPTOM</td>
<td>PROBABLE CAUSE</td>
<td>RECOMMENDATION</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| **Condenser Pressure too High (CRS-A Units)** | a. Non-condensable gas or air in the system.
b. Condenser air intake is blocked.
c. Overcharge of refrigerant.
d. Condenser fan not operating. | Recover system, evacuate per Section 2.10.2.2, recharge. Replace drier/strainer.
Remove debris and clean condenser.
Reclaim excess refrigerant from system.
Check pressure/temperature operating switches and motor. Replace as needed. |
| **Condenser Pressure too High (CRS-W, -G units)** | a. Flow of water/glycol too low (cont.)
b. Water/glycol temperature too high.
c. Control pressure set too high.
d. Water/glycol solution not mixed prior to adding to system. | 1. Check glycol solution level and concentration.
2. Valves not open or partially open. Repair/replace as needed
3. Air in system - bleed system.
4. Check all strainers and clean if needed.
Check flow and operation of drycooler.
Adjust controller to obtain correct pressure.
Remove solution to premix. Refill system. |
| **Condenser Pressure too Low** | a. Loss of refrigerant (indicated by bubbles in sight glass).
b. Condenser fan controls not set properly.
Adjust or repair controls.
R410A- Readjust to 440 psig. |
| **Noisy Compressor** | a. Expansion valve stuck in open position (abnormally cold suction line).
b. Broken compressor valve (compressor knocking, suction pressure rises faster than 2lbs/min after shutdown).
c. Worn or scarred compressor bearings.
d. Liquid slugging.
e. Scroll compressor not properly phased. | Ensure feeder bulb is tight on suction line. Check operation and superheat.
Replace compressor.
Replace compressor.
System overcharged. Reclaim excess refrigerant.
Phase correctly at main power source. **DO NOT REWIRE COMPRESSOR.** |
5.3 Field Service

Repairs must be performed by a journeyman, refrigeration mechanic, or air conditioning technician. Turn off power to unit at the main power disconnect switch before attempting to make repairs.

NOTE
Do not attempt to make repairs without the proper tools.

5.3.1 Water-Water/Glycol System

If the water or water/glycol system isn’t cooling or if cooling is reduced, check for fluid leaks in the system. Check for clogged water lines. If filters are installed in the fluid lines, check the condition of the filters. Clean or replace the filters if necessary.

In situations where scaling could be heavy, untreated water in the unit cooling coils may cause, over a period of time, a loss of heat exchange capacity due to a mineral deposit build-up inside the coil. Only a qualified service mechanic should clean dirty coils.

5.3.1.1 Leak Detection/Repair

A leak in a fluid cooling system will usually form a puddle of fluid beneath the unit that can be easily seen. Visually trace the leak up from the puddle to the area on the unit where fluid may be seen dripping.

When a leak is detected, turn off the fluid supply before attempting repairs. Adjacent piping must be thoroughly cleaned by removing all paint, dirt and oily film. Use wire brush, sandcloth or sandpaper and wipe the area with clean, dry cloths. Protect nearby parts from heat damage by wrapping with water-soaked cloths.

For copper-to-copper (piping) repairs use a phosphorus copper brazing alloy with 15% silver. General purpose silver brazing alloy with 45% silver is to be used for copper-to-brass or copper-to steel repairs.

When repairs are completed, remove all traces of flux and flush the system. After any repair, pressurize the system to check for leaks prior to recharging the system.

5.3.2 DX System

It may be necessary to perform repairs on the refrigeration system. If field repairs are necessary, the following procedures apply:

5.3.2.1 Leak Detection

Several methods can be used to detect a leak in the refrigeration system. The most modern and easiest method is to use an electronic leak detector. Follow the manufacturer’s directions and any leak can be quickly located. A second method is to use soap bubbles. Apply a solution of soapy water with a brush or sponge to the joints and connections in the refrigeration lines. A leak in the lines will cause bubbles to form.

5.3.2.2 Leak Repair

When a leak is located, properly reclaim the remaining refrigerant charge before beginning repairs. Adjacent piping must be thoroughly cleaned by removing all paint, dirt and oily film. Use a wire brush, sandcloth or sandpaper and wipe the area with clean, dry cloths. Protect nearby parts from heat damage by wrapping with water-soaked cloths.

5.3.2.3 Refrigerant Piping

When replacing components within the cabinet of the unit, the following consumable materials are recommended: When brazing copper-to-copper connections (piping liquid line or suction line), use a phosphorus copper brazing alloy with 15% silver. General purpose silver brazing alloy with 45% silver is to be used for copper-to-brass or copper-to steel. For liquid line repairs at the drier, strainer, sight glass, or expansion valve, use a 95% tin to 5% antimony solder with flux.

When component replacement is complete, remove all traces of flux. After any repair, pressure check the system to ensure there are no leaks prior to recharging the system.

5.3.3 Refrigeration System Repairs

5.3.3.1 Compressor Failure

The compressor is the most important component of the air conditioner. Numerous safety devices are provided to protect the compressor from failing.

If a compressor failure has occurred, determine whether it is an electrical or a mechanical failure. An electrical failure will be indicated by the distinct...
pungent odor once the system has been opened. If a burnout has occurred, the oil will be black and acidic. A mechanical failure will have no burned odor and the motor will attempt to run, an abnormal or excessive noise may be present.

An analysis of the oil is the only way to determine the proper procedure for cleaning the refrigerant system. Acid test kits are available from several manufacturers for measuring the acid level in the oil. These are capable of making accurate acid measurements, but if they are not available, a check of the oil by sight and smell can give a quick indication if contamination remains in the system.

CAUTION

Avoid touching or contacting the gas and oil with exposed skin. Severe burns will result. Use long rubber gloves in handling contaminated parts.

All electrical connections should be checked to ensure they are tight and properly made. Check all circuit breakers, contactors and wiring. The contactors should be examined and replaced if contacts are worn or pitted.

If there is acid in the oil, there has been an electrical failure which has caused the compressor motor to burn out. The acid diffuses throughout the refrigeration system and must be removed by using a burnout filter kit before a new compressor is placed in service. Not only must the compressor be replaced, but also the entire refrigeration circuit must be cleaned of the harmful contaminants left by the burnout. See section 5.3.3.2 (Burn-Out/Acidic Cleanup) for the proper procedure.

If there is no acid in the oil, there has been a mechanical failure. See section 5.3.3.3 (Standard Cleanout) for the proper cleaning procedure.

CAUTION

Damage to a replacement compressor caused by improper system cleaning constitutes abuse under the terms of the warranty. This will VOID THE COMPRESSOR WARRANTY. Always consult the factory prior to replacing the compressor.

CAUTION

PVE oil is used in systems with R410A refrigerant. If a replacement compressor is provided, ensure that it is filled with PVE oil before installing.

NOTE

Cleaning operations must be performed by a journeyman, refrigeration mechanic, or air conditioning technician.

5.3.3.2 Standard Cleanout Procedure

1. Turn off power to unit at the main power disconnect switch.
2. Remove the old compressor and install the new compressor.
3. Remove the liquid line drier and install an oversized liquid line filter-drier (one size larger than the normal selection size).
4. Evacuate the system according to standard procedures. Normally, this will include the use of a high-vacuum pump and a low-vacuum micron gauge for measuring the vacuum obtained.
5. Recharge the system.
6. Turn on the power at the main power disconnect switch and start the system.

5.3.3.3 Burn-Out/Acidic Cleanup Procedure

1. These systems should be cleaned using the suction line filter-drier method.
2. Turn off power to the unit at the main power disconnect switch.
3. Remove the burned-out compressor and install the new compressor.
4. Install a suction line filter-drier designed for acid removal.
5. Remove the liquid line drier and install an oversized liquid line filter-drier (one size larger than the normal selection size).
6. Check the expansion valve, sight glass and other controls to see if cleaning or replacement is required.
7. Evacuate the system according to standard procedures. Normally this will include the use of a high-vacuum pump and a low-vacuum micron gauge for measuring the vacuum obtained.
8. Recharge the system through the access valve on the suction line filter-drier.

9. Turn on power at the main power disconnect switch and start the system.

10. A permanently installed suction line filter-drier permits small-system cleanup to be completed in one service call. The pressure drop across the suction line filter-drier should be measured during the first hour of operation. If the pressure drop becomes excessive, the suction line filter-drier should be replaced (See Sporlan Bulletin 40-10, for the maximum recommended pressure drop (PSI) for the suction line filter drier).

11. In 24 hours, take an oil sample. Observe the color and test for acidity. If the oil is dirty or acidic, replace the suction line filter-drier.

12. In 2 weeks, examine oil to determine if another suction line filter-drier change is necessary.

5.3.4 Component Replacement

All electrical connections should be checked to ensure they are tight and properly made. Check all circuit breakers, contactors and wiring. The contactors should be examined and replaced if contacts are worn or pitted.

1. Turn off power to unit at the main power disconnect switch.

2. Remove the old component and install the new one.

3. Turn on power at the main power disconnect switch and start the system.

5.3.4.1 Fan Replacement

The EC Fans are located behind the front access panel. The panel must be removed to access the fans. The fans are equipped with quick connect fittings for the power and control cables to make swap-out easy. Lift the retaining latch on top of the power and control cable connector housings to unplug the cables. Cut the wire-ties holding the cable bundle in the cabinet.

Remove the four hex-bolts holding the inlet ring then remove the four hex-bolts holding the fan mounting bracket. Remove the fan assembly together with the inlet ring from the cabinet. Remove the mounting bracket from the old fan and install it on the new fan. Bolt the new fan assembly (together with the inlet ring) into the cabinet and plug the power and control cables into the connectors.

5.3.4.2 Condensate Pump Replacement

The condensate pump is located behind the lower cabinet fan assembly. To access the pump, the lower fan must be removed as described in Section 5.3.4.1.

Reach inside the fan opening to grasp the pump. Tilt the pump up and cut the wire-ties holding the clear plastic discharge line. Remove the discharge line from the barbed stub fitting. Release the cable retaining clip on the side of the pump and cut the wire-ties holding the cable loop. Maneuver the pump into the fan opening with the cable still attached and remove the cover to expose the wire terminals. Remove the wires from the pump and remove the pump from the cabinet. Install the replacement pump in the same manner that the old pump was removed, reversing the procedure.
6.0 PRODUCT SUPPORT

STULZ provides its customers with Product Support which not only provides technical support and parts but the following additional services, as requested:

- Performance Evaluations
- Start-up Assistance
- Training

STULZ recommends using the services of our Field Service Department to perform start-up and commissioning. They will ensure your equipment is correctly installed and operating properly. This will help to ensure your unit provides years of trouble free service while operating at its highest efficiency.

6.1 Technical Support

The STULZ Technical Support Department is dedicated to the prompt reply and solution to any problem encountered with a unit. Should a problem develop that cannot be resolved using this manual, you may call (888) 529-1266 Monday through Friday from 8:00 a.m. to 5:00 p.m. EST. If a problem occurs after business hours, provide your name and telephone number. One of our service technicians will return your call.

When calling to obtain support, it is important to have the following information readily available, (information is found on the unit's nameplate):

- Unit Serial Number
- Unit Model Number
- STULZ Sales Order Number
- Description of Problem

6.2 Obtaining Warranty Parts

Warranty inquiries are to be made through the Technical Support Department at (888) 529-1266 Monday through Friday from 8:00 a.m. to 5:00 p.m. EST. A service technician at STULZ will assist in troubleshooting the system over the telephone with a field service technician to determine the defect of the part. If it is determined that the part may be defective a replacement part will be sent via UPS ground. If the customer requests that warranty part(s) be sent by any other method than UPS ground the customer is responsible for the shipping charges. If you do not have established credit with STULZ you must give a freight carrier account number.

A written (or faxed) purchase order is required on warranty parts and must be received prior to 2:00 p.m. for same day shipment. The purchase order must contain the following items:

- Purchase Order Number
- Date of Order
- STULZ Stated Part Price
- Customer Billing Address
- Shipping Address
- Customer’s Telephone and Fax Numbers
- Contact Name
- Unit Model No., Serial No. & STULZ Item No.

The customer is responsible for the shipping cost incurred for returning the defective part(s) back to STULZ. Return of defective part(s) must be within 30 days at which time an evaluation of the part(s) is conducted and if the part is found to have a manufacturing defect a credit will be issued.

When returning defective part(s) complete the Return Material Authorization Form and the address label received with the replacement part.

See the STULZ Standard Warranty located in section one of this manual.

6.3 Obtaining Spare/Replacement Parts

Spare and replacement parts requests are to be made through Product Support by fax (301) 620-2606, telephone (888) 529-1266 or E-mail (parts@stulz-ats.com). Quotes are given for specified listed parts for a specific unit.

STULZ accepts Visa and MasterCard. STULZ may extend credit to its customers; a credit application must be prepared and approved (this process could take one week).

A 25% minimum restocking charge will be applied on returned stocked parts that were sold as spare/replacement parts. If the returned part is not a stocked item, a 50% restocking charge may be applied. Additionally a Return Material Authorization Number is required when returning parts. To receive credit for returned repair/replacement parts, the parts must be returned to STULZ within 30 days of the purchase date. Spare part sales over 30 days old will be considered final and the parts will remain the sole property of the ordering party.
APPENDIX A - FORMS

STULZ Air Technology Systems Inc.
Frederick, Maryland USA 21704
Telephone: (301) 620-2033 Facsimile: (301) 620-1396

Checklist for Completed Installation

☐ 1 Proper clearances for service access have been maintained in front of the equipment.

☐ 2 Equipment is level and mounting fasteners are tight.

☐ 3 Field installed piping completed.

☐ 4 All field installed piping leak tested.

☐ 5 Condensate drain line connected.

☐ 6 Water supply line connected to humidifier (if applicable). If manual cut-off valve is installed, open valve.

☐ 7 Humidifier “On/Off/Drain” switch is in “On” position.

☐ 8 Filter(s) installed.

☐ 9 Incoming line voltage matches equipment nominal nameplated rating ± tolerances.

☐ 10 Main power wiring connections to the equipment, including earth ground, have been properly installed.

☐ 11 Customer supplied main power circuit breaker (HACR type) or fuses have proper ratings for equipment installed.

☐ 12 All wiring connections are tight.

☐ 13 Foreign materials have been removed from inside and around all equipment installed (shipping materials, construction materials, tools, etc.).

☐ 14 Inspect all piping connections for leaks during initial operation.
Periodic General Maintenance Checks and Services Checklist

<table>
<thead>
<tr>
<th>Date: ____________________________</th>
<th>Prepared By: ____________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number: ____________________________</td>
<td>Serial Number: _________________________</td>
</tr>
<tr>
<td>Item Number: ____________________________</td>
<td></td>
</tr>
</tbody>
</table>

Monthly

<table>
<thead>
<tr>
<th>Filters</th>
<th>Blower Section</th>
<th>Condensate Drain</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ Cleanliness</td>
<td>❑ Blower Turns</td>
<td>❑ Drain is Open</td>
</tr>
<tr>
<td>❑ No Obstructions</td>
<td></td>
<td>❑ Condensate Pan Safety Switch Operates Freely</td>
</tr>
</tbody>
</table>

Miscellaneous

- ❑ Check Water/Glycol or Chilled Water circuit for Air (bleed as required)
- ❑ Humidifier and Controls Operate Properly

Semi-Annually

<table>
<thead>
<tr>
<th>❑ Check Refrigerant Charge (bubbles in sight-glass)</th>
<th>❑ Tighten Electrical Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ Check Suction & Discharge Pressure</td>
<td>❑ Check Contacts on Contactors for Pitting</td>
</tr>
<tr>
<td>❑ Check Glycol Solution Concentration in System</td>
<td>❑ Clean Unit as Necessary</td>
</tr>
<tr>
<td>❑ Clean Coils</td>
<td>❑ Test the Glycol Solution Inhibitors (flush if necessary)</td>
</tr>
<tr>
<td>❑ Clean Condensate Pump</td>
<td></td>
</tr>
</tbody>
</table>

Annually

Chilled Water Systems

- ❑ Inspect Water Glycol System for Leaks and Corrosion
- ❑ Conduct a Complete Check of All Services Listed Above and Clean Unit’s Interior

Notes:

Signature:________________________________

*** If factory assistance is required for any reason, provide the serial number and model number found on the unit nameplate. This will speed the process and ensure accuracy of information. ***
Appendix B – Glossary

Definition of Terms and Acronyms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>STULZ</td>
<td>STULZ Air Technology Systems, Inc.</td>
</tr>
<tr>
<td>BTU/Hr</td>
<td>British Thermal Units Per Hour</td>
</tr>
<tr>
<td>CFM</td>
<td>Cubic Feet Per Minute</td>
</tr>
<tr>
<td>CNDCT</td>
<td>Conductor</td>
</tr>
<tr>
<td>CW</td>
<td>Chilled Water</td>
</tr>
<tr>
<td>DX</td>
<td>Direct Expansion</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge</td>
</tr>
<tr>
<td>° F</td>
<td>Degrees Fahrenheit</td>
</tr>
<tr>
<td>FLA</td>
<td>Full Load Amps</td>
</tr>
<tr>
<td>FOB</td>
<td>Freight on Board</td>
</tr>
<tr>
<td>HACR</td>
<td>Heating, Air Conditioning, Refrigeration</td>
</tr>
<tr>
<td>HP</td>
<td>Horse Power</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IAQ</td>
<td>Indoor Air Quality</td>
</tr>
<tr>
<td>m.i.w.g.</td>
<td>milli-Inches of Water Gauge</td>
</tr>
<tr>
<td>KVA</td>
<td>Kilo Volt Amps</td>
</tr>
<tr>
<td>kW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>LRA</td>
<td>Locked Rotor Amps</td>
</tr>
<tr>
<td>MAX CKT BKR</td>
<td>Maximum Circuit Breaker</td>
</tr>
<tr>
<td>MAX FUSE</td>
<td>Maximum Fuse</td>
</tr>
<tr>
<td>MCA</td>
<td>Minimum Circuit Ampacity</td>
</tr>
<tr>
<td>MSDS</td>
<td>Material Safety Data Sheet</td>
</tr>
<tr>
<td>NEC</td>
<td>National Electric Code</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Protection Agency</td>
</tr>
<tr>
<td>PH</td>
<td>Phase</td>
</tr>
<tr>
<td>PI</td>
<td>Proportional/Integral (Control)</td>
</tr>
<tr>
<td>PSIG</td>
<td>Pounds Per Square Inch Gauge</td>
</tr>
<tr>
<td>RLA</td>
<td>Run Load Amps</td>
</tr>
<tr>
<td>R-Value</td>
<td>Thermal Resistance</td>
</tr>
<tr>
<td>R410A</td>
<td>Blended Refrigerant</td>
</tr>
<tr>
<td>SPDT</td>
<td>Single Pole, Double Throw</td>
</tr>
<tr>
<td>TEV</td>
<td>Thermal Expansion Valve</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>VAC</td>
<td>Volt, Alternating Current</td>
</tr>
<tr>
<td>VDC</td>
<td>Volt, Direct Current</td>
</tr>
<tr>
<td>WG</td>
<td>Water Glycol</td>
</tr>
</tbody>
</table>
Globally close to you

Stulz-ATS, located in Frederick, MD USA, is part of The STULZ Group with headquarters in Hamburg, Germany and production facilities world wide. Our network of manufacturer’s representatives and sales partners span the globe, providing innovative solutions to your unique environmental control needs.

www.stulz-ats.com